Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

how to solve problem in education

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

  Problems and Problem Solving

What is a problem?

In common language, a problem is an unpleasant situation, a difficulty.

But in education the first definition in Webster's Dictionary — "a question raised for inquiry, consideration, or solution" — is a common meaning.

More generally in education, it's useful to define problem broadly — as any situation, in any area of life, where you have an opportunity to make a difference, to make things better — so problem solving is converting an actual current state into a desired future state that is better, so you have "made things better."  Whenever you are thinking creatively-and-critically about ways to increase the quality of life (or to avoid a decrease in quality) for yourself and/or for others, you are actively involved in problem solving.  Defined in this way, problem solving includes almost everything you do in life.

  Problem-Solving Skills  —  Creative and Critical

An important goal of education is helping students learn how to think more productively while solving problems, by combining creative thinking (to generate ideas) and critical thinking (to evaluate ideas) with accurate knowledge (about the truth of reality).  Both modes of thinking (creative & critical) are essential for a well-rounded productive thinker, according to experts in both fields:

Richard Paul (a prominent advocate of CRITICAL THINKING ) says, "Alternative solutions are often not given, they must be generated or thought-up.  Critical thinkers must be creative thinkers as well, generating possible solutions in order to find the best one.  Very often a problem persists, not because we can't tell which available solution is best, but because the best solution has not yet been made available — no one has thought of it yet."

Patrick Hillis & Gerard Puccio (who focus on CREATIVE THINKING ) describe the combining of creative generation with critical evaluation in a strategy of creative-and-critical Problem Solving that "contains many tools which can be used interchangeably within any of the stages.  These tools are selected according to the needs of the task and are either divergent (i.e., used to generate options) or convergent (i.e., used to evaluate options)."

Creative Thinking can be motivated and guided by Creative Thinking:   One of the interactions between creative thinking and critical thinking occurs when we use critical Evaluation to motivate and guide creative Generation in a critical - and - creative process of Guided Generation that is Guided Creativity .  In my links-page for CREATIVITY you can explore this process in three stages, to better understand how a process of Guided Creativity — explored & recognized by you in Part 1 and then described by me in Part 2 — could be used (as illustrated in Part 3 ) to improve “the party atmosphere” during a dinner you'll be hosting, by improving a relationship.

  Education for Problem Solving

By using broad definitions for problem solving and education, we can show students how they already are using productive thinking to solve problems many times every day, whenever they try to “make things better” in some way..

Problem Solving:   a problem is an opportunity , in any area of life, to make things better.   Whenever a decision-and-action helps you “ make it better ” — when you convert an actual state (in the past) into a more desirable actual state (in the present and/or future) — you are problem solving, and this includes almost everything you do in life, in all areas of life.      { You can make things better if you increase quality for any aspect of life, or you maintain quality by reducing a potential decrease of quality.   }     /     design thinking ( when it's broadly defined ) is the productive problem-solving thinking we use to solve problems.  We can design (i.e. find, invent, or improve ) a better product, activity, relationship, and/or strategy (in General Design ) and/or (in Science-Design ) explanatory theory.     {   The editor of this links-page ( Craig Rusbult ) describes problem solving in all areas of life .}

note:  To help you decide whether to click a link or avoid it, links highlighted with green or purple go to pages I've written, in my website about Education for Problem Solving or in this website for THINKING SKILLS ( CREATIVE and CRITICAL ) we use to SOLVE PROBLEMS .

Education:   In another broad definition, education is learning from life-experiences, learning how to improve, to become more effective in making things better.   For example, Maya Angelou – describing an essential difference between past and present – says "I did then what I knew how to do. Now that I know better, I do better, " where improved problem solving skills (when "do better" leads to being able to more effectively "make things better") has been a beneficial result of education, of "knowing better" due to learning from life-experiences.

Growth:   One of the best ways to learn more effectively is by developing-and-using a better growth mindset so — when you ask yourself “how well am I doing in this area of life?” and honestly self-answer “not well enough” — instead of thinking “not ever” you are thinking “not yet” because you know that your past performance isn't your future performance;  and you are confident that in this area of life (and in other areas) you can “grow” by improving your understandings-and-skills, when you invest intelligent effort in your self-education and self-improving.  And you can "be an educator" by supporting the self-improving of other people by helping them improve their own growth mindsets.    { resources for Growth Mindset }

Growth in Problem-Solving Skills:   A main goal of this page is to help educators help students improve their skill in solving problems — by improving their ability to think productively (to more effectively combine creative thinking with critical thinking and accurate knowledge ) — in all areas of their everyday living.    {resources: growth mindset for problem solving that is creative-and-critical }

How?   You can improve your Education for Problem Solving by creatively-and-critically using general principles & strategies (like those described above & below, and elsewhere) and adapting them to specific situations, customizing them for your students (for their ages, abilities, experiences,...) and teachers, for your community and educational goals.

Promote Productive Thinking:

classroom (with Students & Teachers) actively doing Design Thinking

Build Educational Bridges:

When we show students how they use a similar problem-solving process (with design thinking ) for almost everything they do in life , we can design a wide range of activities that let us build two-way educational bridges:

• from Life into School, building on the experiences of students, to improve confidence:   When we help students recognize how they have been using a problem-solving process of design thinking in a wide range of problem-solving situations,... then during a classroom design activity they can think “I have done this before (during design-in-life ) so I can do it again (for design-in-school )” to increase their confidence about learning.  They will become more confident that they can (and will) improve the design-thinking skills they have been using (and will be using) to solve problems in life and in school.

• from School into Life, appealing to the hopes of students, to improve motivation:   We can show each student how they will be using design thinking for "almost everything they do" in their future life (in their future whole-life, inside & outside school) so the design-thinking skills they are improving in school will transfer from school into life and will help them achieve their personal goals for life .  When students want to learn in school because they are learning for life, this will increase their motivations to learn.

Improve Educational Equity:

When we build these bridges (past-to-present from Life into School , and present-to-future from School into Life ) we can improve transfers of learning — in time (past-to-present & present-to-future) and between areas (in school-life & whole-life) for whole-person education — and transitions in attitudes to improve a student's confidence & motivations.  This will promote diversity and equity in education by increasing confidence & motivation for a wider range of students, and providing a wider variety of opportunities for learning in school, and for success in school.  We want to “open up the options” for all students, so they will say “yes, I can do this” for a wider variety of career-and-life options, in areas of STEM (Science, Technology, Engineering, Math) and non-STEM .

This will help us improve diversity-and-equity in education by increasing confidence & motivations for a wider range of students, and providing a wider variety of opportunities for learning in school, and success in school.

  Design Curriculum & Instruction:  

teachers doing DEEPdt Design Thinking

• DEFINE GOALS for desired outcomes, for ideas-and-skills we want students to learn,

• DESIGN INSTRUCTION with learning activities (and associated teaching activities ) that will provide opportunities for experience with these ideas & skills, and help students learn more from their experiences.     {more about Defining Goals and Designing Instruction }   {one valuable activity is using a process-of-inquiry to learn principles-for-inquiry }

  Problem-Solving Process for Science and Design

We'll look at problem-solving process for science (below) and design ( later ) separately, and for science-and-design together., problem-solving process for science, is there a “scientific method”      we have reasons to say....

    NO, because there is not a rigid sequence of steps that is used in the same way by all scientists, in all areas of science, at all times,  but also...
    YES, because expert scientists (and designers) tend to be more effective when they use flexible strategies — analogous to the flexible goal-directed improvising of a hockey player, but not the rigid choreography of a figure skater — to coordinate their thinking-and-actions in productive ways, so they can solve problems more effectively.

Below are some models that can help students understand and do the process of science.  We'll begin with simplicity, before moving on to models that are more complex so they can describe the process more completely-and-accurately.

A simple model of science is PHEOC (Problem, Hypothesis, Experiment, Observe, Conclude).  When PHEOC, or a similar model, is presented — or is misinterpreted — as a rigid sequence of fixed steps, this can lead to misunderstandings of science, because the real-world process of science is flexible.  An assumption that “model = rigidity” is a common criticism of all models-for-process, but this unfortunate stereotype of "rigidity" is not logically justifiable because all models emphasize the flexibility of problem-solving process in real life, and (ideally) in the classroom.  If a “step by step” model (like PHEOC or its variations) is interpreted properly and is used wisely, the model can be reasonably accurate and educationally useful.  For example,...

A model that is even simpler — the 3-step POE (Predict, Observe, Learn) — has the essentials of scientific logic, and is useful for classroom instruction.

Science Buddies has Steps of the Scientific Method with a flowchart showing options for flexibility of timing.  They say, "Even though we show the scientific method as a series of steps, keep in mind that new information or thinking might cause a scientist to back up and repeat steps at any point during the process.  A process like the scientific method that involves such backing up and repeating is called an iterative process."    And they compare Scientific Method with Engineering Design Process .

Lynn Fancher explains - in The Great SM - that "while science can be done (and often is) following different kinds of protocols, the [typical simplified] description of the scientific method includes some very important features that should lead to understanding some very basic aspects of all scientific practice," including Induction & Deduction and more.

From, many thoughts to explore in a big website .

Other models for the problem solving process of science are more complex, so they can be more thorough — by including a wider range of factors that actually occur in real-life science, that influence the process of science when it's done by scientists who work as individuals and also as members of their research groups & larger communities — and thus more accurate.  For example,

Understanding Science (developed at U.C. Berkeley - about ) describes a broad range of science-influencers, * beyond the core of science: relating evidence and ideas .  Because "the process of science is exciting" they want to "give users an inside look at the general principles, methods, and motivations that underlie all of science."  You can begin learning in their homepage (with US 101, For Teachers, Resource Library,...) and an interactive flowchart for "How Science Works" that lets you explore with mouse-overs and clicking.

* These factors affect the process of science, and occasionally (at least in the short run) the results of science.  To learn more about science-influencers,...
    Knowledge Building (developed by Bereiter & Scardamalia, links - history ) describes a human process of socially constructing knowledge.
    The Ethics of Science by Henry Bauer — author of Scientific Literacy and the Myth of the Scientific Method (click "look inside") — examines The Knowledge Filter and a Puzzle and Filter Model of "how science really works."

[[ i.o.u. - soon, in mid-June 2021, I'll fix the links in this paragraph.]] Another model that includes a wide range of factors (empirical, social, conceptual) is Integrated Scientific Method by Craig Rusbult, editor of this links-page .  Part of my PhD work was developing this model of science, in a unifying synthesis of ideas from scholars in many fields, from scientists, philosophers, historians, sociologists, psychologists, educators, and myself.  The model is described in two brief outlines ( early & later ), more thoroughly, in a Basic Overview (with introduction, two visual/verbal representations, and summaries for 9 aspects of Science Process ) and a Detailed Overview (examining the 9 aspects more deeply, with illustrations from history & philosophy of science), and even more deeply in my PhD dissertation (with links to the full text, plus a “world record” Table of Contents, references, a visual history of my diagrams for Science Process & Design Process, and using my integrative model for [[ integrative analysis of instruction ).   /   Later, I developed a model for the basic logic-and-actions of Science Process in the context of a [[ more general Design Process .

Problem-Solving Process for Design

Because "designing" covers a wide range of activities, we'll look at three kinds of designing..

Engineering Design Process:   As with Scientific Method,

    a basic process of Engineering Design can be outlined in a brief models-with-steps  –  5   5 in cycle   7 in cycle   8   10   3 & 11 .     {these pages are produced by ==[later, I'll list their names]}
    and it can be examined in more depth:  here & here and in some of the models-with-steps (5... 3 & 11), and later .

Problem-Solving Process:   also has models-with-steps (  4   4   5   6   7  ) * and models-without-steps (like the editor's model for Design-Thinking Process ) to describe creative-and-critical thinking strategies that are similar to Engineering Design Process, and are used in a wider range of life — for all problem-solving situations (and these include almost everything we do in life) — not just for engineering.     { *  these pages are produced by ==}

Design-Thinking Process:   uses a similar creative-and-critical process, * but with a focus on human - centered problems & solutions & solving - process and a stronger emphasis on using empathy .  (and creativity )

* how similar?  This depends on whether we define Design Thinking in ways that are narrow or broad.   {the wide scope of problem-solving design thinking }  {why do I think broad definitions (for objectives & process) are educationally useful ?}

Education for Design Thinking (at Stanford's Design School and beyond)

  Problem Solving in Our Schools:

Improving education for problem solving, educators should want to design instruction that will help students improve their thinking skills.  an effective strategy for doing this is..., goal-directed designing of curriculum & instruction.

When we are trying to solve a problem (to “make things better”) by improving our education for problem solving, a useful two-part process is to...

    1.  Define GOALS for desired outcomes, for the ideas-and-skills we want students to learn;
    2.  Design INSTRUCTION with Learning Activities that will provide opportunities for experience with these ideas & skills, and will help students learn more from their experiences.

Basically, the first part ( Define Goals ) is deciding WHAT to Teach , and the second part ( Design Instruction ) is deciding HOW to Teach .

But before looking at WHAT and HOW   , here are some ways to combine them with...

Strategies for Goal-Directed Designing of WHAT-and-HOW.

Understanding by Design ( UbD ) is a team of experts in goal-directed designing,

as described in an overview of Understanding by Design from Vanderbilt U.

Wikipedia describes two key features of UbD:  "In backward design, the teacher starts with classroom outcomes [#1 in Goal-Directed Designing above ] and then [#2] plans the curriculum, * choosing activities and materials that help determine student ability and foster student learning," and  "The goal of Teaching for Understanding is to give students the tools to take what they know, and what they will eventually know, and make a mindful connection between the ideas. ...  Transferability of skills is at the heart of the technique.  Jay McTighe and Grant Wiggin's technique.  If a student is able to transfer the skills they learn in the classroom to unfamiliar situations, whether academic or non-academic, they are said to truly understand."

* UbD "offers a planning process and structure to guide curriculum, assessment, and instruction.  Its two key ideas are contained in the title:  1) focus on teaching and assessing for understanding and learning transfer, and   2) design curriculum “backward” from those ends."

ASCD – the Association for Supervision and Curriculum Development (specializing in educational leadership ) – has a resources-page for Understanding by Design that includes links to The UbD Framework and Teaching for Meaning and Understanding: A Summary of Underlying Theory and Research plus sections for online articles and books — like Understanding by Design ( by Grant Wiggins & Jay McTighe with free intro & U U ) and Upgrade Your Teaching: Understanding by Design Meets Neuroscience ( about How the Brain Learns Best by Jay McTighe & Judy Willis who did a fascinating ASCD Webinar ) and other books — plus DVDs and videos (e.g. overview - summary ) & more .

Other techniques include Integrative Analysis of Instruction and Goal-Directed Aesop's Activities .

In two steps for a goal-directed designing of education , you:

1)  Define GOALS (for WHAT you want students to improve) ;

2)  Design INSTRUCTION (for HOW to achieve these Goals) .

Although the sections below are mainly about 1. WHAT to Teach (by defining Goals ) and 2. HOW to Teach (by designing Instruction ) there is lots of overlapping, so you will find some "how" in the WHAT, and lots of "what" in the HOW.

P ERSONAL Skills   (for Thinking about Self)

A very useful personal skill is developing-and-using a...

Growth Mindset:  If self-education is broadly defined as learning from your experiences,   better self-education is learning more effectively by learning more from experience, and getting more experiences.   One of the best ways to learn more effectively is by developing a better growth mindset so — when you ask yourself “how well am I doing in this area of life?” and honestly answer “not well enough” — you are thinking “not yet” (instead of “not ever”) because you are confident that in this area of life (as in most areas, including those that are most important) you can “grow” by improving your skills, when you invest intelligent effort in your self-education.  And you can support the self-education of other people by helping them improve their own growth mindsets.     Carol Dweck Revisits the Growth Mindset and (also by Dweck) a video, Increasing Educational Equity and Opportunity .     3 Ways Educators Can Promote A Growth Mindset by Dan LaSalle, for Teach for America.     Growth Mindset: A Driving Philosophy, Not Just a Tool by David Hochheiser, for Edutopia.     Growth Mindset, Educational Equity, and Inclusive Excellence by Kris Slowinski who links to 5 videos .     What’s Missing from the Conversation: The Growth Mindset in Cultural Competency by Rosetta Lee.     YouTube video search-pages for [ growth mindset ] & [ mindset in education ] & [ educational equity mindset ].

also:  Growth Mindset for Creativity

Self-Perception -- [[a note to myself: accurate understanding/evaluation of self + confidence in ability to improve/grow ]]

M ETA C OGNITIVE Skills   (for Solving Problems)

What is metacognition?   Thinking is cognition.   When you observe your thinking and think about your thinking (maybe asking “how can I think more effectively?”) this is meta- cognition, which is cognition about cognition.  To learn more about metacognition — what it is, why it's valuable, and how to use it more effectively — some useful web-resources are:

a comprehensive introductory overview by Nancy Chick, for Vanderbilt U.

my links-section has descriptions of (and links to) pages by other authors: Jennifer Livingston, How People Learn, Marsha Lovett, Carleton College, Johan Lehrer, Rick Sheets, William Peirce, and Steven Shannon, plus links for Self-Efficacy with a Growth Mindset , and more about metacognition.

my summaries about the value of combining cognition-and-metacognition and regulating it for Thinking Strategies (of many kinds ) to improve Performing and/or Learning by Learning More from Experience with a process that is similar to...

the Strategies for Self-Regulated Learning developed by other educators.

videos — search youtube for [ metacognition ] and [ metacognitive strategies ] and [ metacognition in education ].

And in other parts of this links-page,

As one part of guiding students during an inquiry activity a teacher can stimulate their metacognition by helping them reflect on their experiences.

While solving problems, almost always it's useful to think with empathy and also with metacognitive self-empathy by asking “what do they want?” and “what do I want?” and aiming for a win-win solution.

P ROCESS -C OORDINATING Skills   (for Solving Problems)

THINKING SKILLS and THINKING PROCESS:  When educators develop strategies to improve the problem solving abilities of students, usually their focus is on thinking skills.   But thinking process is also important.

Therefore, it's useful to define thinking skills broadly, to include thinking that leads to decisions-about-actions, and actions:

        thinking  →  action-decisions  →  actions

[[ I.O.U. -- later, in mid-June 2021, the ideas below will be developed -- and i'll connect it with Metacognitive Skills because we use Metacognition to Coordinate Process.

[[ here are some ideas that eventually will be in this section:

Collaborative Problem Solving [[ this major new section will link to creative.htm# collaborative-creativity (with a brief summary of ideas from there) and expand these ideas to include general principles and "coordinating the collaboration" by deciding who will do what, when, with some individual "doing" and some together "doing" ]]

actions can be mental and/or physical (e.g. actualizing Experimental Design to do a Physical Experiment, or actualizing an Option-for-Action into actually doing the Action

[[a note to myself: educational goals:  we should help students improve their ability to combine their thinking skills — their creative Generating of Options and critical Generating of Options, plus using their Knowledge-of-Ideas that includes content-area knowledge plus the Empathy that is emphasized in Design Thinking — into an effective thinking process .

[[ Strategies for Coordinating:  students can do this by skillfully Coordinating their Problem-Solving Actions (by using their Conditional Knowledge ) into an effective Problem-Solving Process.

[[ During a process of design, you coordinate your thinking-and-actions by making action decisions about “what to do next.”  How?  When you are "skillfully Coordinating..." you combine cognitive/metacognitive awareness (of your current problem-solving process) with (by knowing, for each skill, what it lets you accomplish, and the conditions in which it will be useful).

[[ a little more about problem-solving process

[[ here are more ideas that might be used here:

Sometimes tenacious hard work is needed, and perseverance is rewarded.  Or it may be wise to be flexible – to recognize that what you've been doing may not be the best approach, so it's time to try something new – and when you dig in a new location your flexibility pays off.

Perseverance and flexibility are contrasting virtues.  When you aim for an optimal balancing of this complementary pair, self-awareness by “knowing yourself” is useful.  Have you noticed a personal tendency to err on the side of either too much perseverance or not enough?  Do you tend to be overly rigid, or too flexible?

Making a wise decision about perseverance — when you ask, “Do I want to continue in the same direction, or change course?” * — is more likely when you have an aware understanding of your situation, your actions, the results, and your goals.  Comparing results with goals is a Quality Check, providing valuable feedback that you can use as a “compass” to help you move in a useful direction.  When you look for signs of progress toward your goals in the direction you're moving, you may have a feeling, based on logic and experience, that your strategy for coordinating the process of problem solving isn't working well, and it probably never will.  Or you may feel that the goal is almost in sight and you'll soon reach it.

- How I didn't Learn to Ski (and then did) with Persevering plus Flexible Insight -


Should we explicitly teach principles for thinking, can we use a process of inquiry to teach principles for inquiry, should we use a “model” for problem-solving process.

combining models?

What are the benefits of infusion and separate programs?  

Principles & Strategies & Models ?

Should we explicitly teach “principles” for thinking?

Using evidence and logic — based on what we know about the ways people think and learn — we should expect a well-designed combination of “experience + reflection + principles” to be more educationally effective than experience by itself, to help students improve their creative-and-critical thinking skills and whole-process skills in solving problems (for design-inquiry) and answering questions (for science-inquiry).

Can we use a process-of-inquiry to teach principles-for-inquiry?

classroom (with Students & Teachers) actively doing Design Thinking

*   In a typical sequence of ERP, students first get Experiences by doing a design activity.  During an activity and afterward, they can do Reflections (by thinking about their experiences) and this will help them recognize Principles for doing Design-Thinking Process that is Problem-Solving Process.     { design thinking is problem-solving thinking }

During reflections & discussions, typically students are not discovering new thoughts & actions.  Instead they are recognizing that during a process of design they are using skills they already know because they already have been using Design Thinking to do almost everything in their life .  A teacher can facilitate these recognitions by guiding students with questions about what they are doing now, and what they have done in the past, and how these experiences are similar, but also are different in some ways.  When students remember (their prior experience) and recognize (the process they did use, and are using), they can formulate principles for their process of design thinking.  But when they formulate principles for their process of problem solving, they are just making their own experience-based prior knowledge — of how they have been solving problems, and are now solving problems — more explicit and organized.

If we help students "make their own experience-based prior knowledge... more explicit and organized" by showing them how their knowledge can be organized into a model for problem-solving process, will this help them improve their problem-solving abilities?

IOU - This mega-section will continue being developed in mid-June 2021.

[[a note to myself: thinking skills and thinking process — What is the difference? - Experience + Reflection + Principles - coordination-decisions

[[are the following links specifically for this section about "experience + principles"? maybe not because these seem to be about principles, not whether to teach principles.]]

An excellent overview is Teaching Thinking Skills by Kathleen Cotton. (the second half of her page is a comprehensive bibliography)

This article is part of The School Improvement Research Series (available from Education Northwest and ERIC ) where you can find many useful articles about thinking skills & other topics, by Cotton & other authors.  [[a note to myself: it still is excellent, even though it's fairly old, written in 1991 -- soon, I will search to find more-recent overviews ]]

Another useful page — What Is a Thinking Curriculum ? (by Fennimore & Tinzmann) — begins with principles and then moves into applications in Language Arts, Mathematics, Sciences, and Social Sciences.

My links-page for Teaching-Strategies that promote Active Learning explores a variety of ideas about strategies for teaching (based on principles of constructivism, meaningful reception,...) in ways that are intended to stimulate active learning and improve thinking skills.   Later, a continuing exploration of the web will reveal more web-pages with useful “thinking skills & problem solving” ideas (especially for K-12 students & teachers) and I'll share these with you, here and in TEACHING ACTIVITIES .

Of course, thinking skills are not just for scholars and schoolwork, as emphasized in an ERIC Digest , Higher Order Thinking Skills in Vocational Education .  And you can get information about 23 ==Programs that Work from the U.S. Dept of Education. 

goals can include improving affective factors & character == e.g. helping students learn how to develop & use use non-violent solutions for social problems .


In education for problem solving, one unresolved question is "What are the benefits of infusion, or separate programs? "  What is the difference?

With infusion , thinking skills are closely integrated with content instruction in a subject area, in a "regular" course.

In separate programs , independent from content-courses, the explicit focus of a course is to help students improve their thinking skills.

In her overview of the field, Kathleen Cotton says,

    Of the demonstrably effective programs, about half are of the infused variety, and the other half are taught separately from the regular curriculum. ...  The strong support that exists for both approaches... indicates that either approach can be effective.  Freseman represents what is perhaps a means of reconciling these differences [between enthusiastic advocates of each approach] when he writes, at the conclusion of his 1990 study: “Thinking skills need to be taught directly before they are applied to the content areas. ...  I consider the concept of teaching thinking skills directly to be of value especially when there follows an immediate application to the content area.”

For principles and examples of infusion , check the National Center for Teaching Thinking which lets you see == What is Infusion? (an introduction to the art of infusing thinking skills into content instruction), and == sample lessons (for different subjects, grade levels, and thinking skills). -- resources from teach-think-org -- [also, lessons designed to infuse Critical and Creative Thinking into content instruction]

Infusing Teaching Thinking Into Subject-Area Instruction (by Robert Swarz & David Perkins) - and more about the book

And we can help students improve their problem-solving skills with teaching strategies that provide structure for instruction and strategies for thinking . ==[use structure+strategies only in edu-section?

Adobe [in creative]

MORE about Teaching Principles for Problem Solving

[[ i.o.u. -- this section is an "overlap" between #1 (Goals) and #2 (Methods) so... maybe i'll put it in-between them? -- i'll decide soon, maybe during mid-June 2021 ]]

Two Kinds of Inquiry Activities  (for Science and Design )

To more effectively help students improve their problem-solving skills, teachers can provide opportunities for students to be actively involved in solving problems, with inquiry activities .  What happens during inquiry?  Opportunities for inquiry occur whenever a gap in knowledge — in conceptual knowledge (so students don't understand) or procedural knowledge (so they don't know what to do, or how) — stimulates action (mental and/or physical) and students are allowed to think-do-learn.

Students can be challenged to solve two kinds of problems during two kinds of inquiry activity:

    during Science-Inquiry they try to improve their understanding, by asking problem-questions and seeking answers.  During their process of solving problems, they are using Science-Design , aka Science , to design a better explanatory theory.
    during Design-Inquiry they try to improve some other aspect(s) of life, by defining problem-projects and seeking solutions.   During their process of solving problems, they are using General Design (which includes Engineering and more) to design a better product, activity, or strategy.
    But... whether the main objective is for Science-Design or General Design, a skilled designer will be flexible, will do whatever will help them solve the problem(s).  Therefore a “scientist” sometimes does engineering, and an “engineer” sometimes does science.  A teacher can help students recognize how-and-why they also do these “ crossover actions ” during an activity for Science Inquiry or Design Inquiry.  Due to these connections, we can build transfer-bridges between the two kinds of inquiry ,  and combine both to develop “hybrid activities” for Science-and-Design Inquiry.

Goal-Priorities:  There are two kinds of inquiry, so (re: Goals for What to Learn) what emphasis do we want to place on activities for Science -Inquiry and Design -Inquiry?  (in the limited amount of classroom time that teachers can use for Inquiry Activities)

Two Kinds of Improving  (for Performing and Learning )

Goal-Priorities:  There are two kinds of improving, so (re: Goals for What to Learn) what emphasis do we want to place on better Performing (now) and Learning (for later)?

When defining goals for education, we ask “How important is improving the quality of performing now, and (by learning now ) of performing later   ?”   For example, a basketball team (coach & players) will have a different emphasis in an early-season practice (when their main goal is learning well) and end-of-season championship game (when their main goal is performing well).     {we can try to optimize the “total value” of performing/learning/enjoying for short-term fun plus long-term satisfactions }

SCIENCE   (to use-learn-teach Skills for Problem Solving )

Problem-solving skills used for science.

This section supplements models for Scientific Method that "begin with simplicity, before moving on to models that are more complex so they can describe the process more completely-and-accurately. "  On the spectrum of simplicity → complexity , one of the simplest models is...

POE (Predict, Observe, Learn) to give students practice with the basic scientific logic we use to evaluate an explanatory theory about “what happens, how, and why.”  POE is often used for classroom instruction — with interactive lectures [iou - their website is temporarily being "restored"] & in other ways — and research has shown it to be effective.  A common goal of instruction-with-POE is to improve the conceptual knowledge of students, especially to promote conceptual change their alternative concepts to scientific concepts.  But students also improve their procedural knowledge for what the process of science is, and how to do the process.     { more – What's missing from POE ( experimental skills ) w hen students use it for evidence-based argumentation    and   Ecologies - Educational & Conceptual  }

Dany Adams (at Smith College) explicitly teaches critical thinking skills – and thus experiment-using skills – in the context of scientific method.

Science Buddies has models for Scientific Method (and for Engineering Design Process ) and offers Detailed Help that is useful for “thinking skills” education. ==[DetH]

Next Generation Science Standards ( NGSS ) emphasizes the importance of designing curriculum & instruction for Three Dimensional Learning with productive interactions between problem-solving Practices (for Science & Engineering ) and Crosscutting Concepts and Disciplinary Core Ideas.

Science: A Process Approach ( SAPA ) was a curriculum program earlier, beginning in the 1960s.  Michael Padilla explains how SAPA defined The Science Process Skills as "a set of broadly transferable abilities, appropriate to many science disciplines and reflective of the behavior of scientists.  SAPA categorized process skills into two types, basic and integrated.  The basic (simpler) process skills provide a foundation for learning the integrated (more complex) skills."   Also, What the Research Says About Science Process Skills by Karen Ostlund;  and Students' Understanding of the Procedures of Scientific Enquiry by Robin Millar, who examines several approaches and concludes (re: SAPA) that "The process approach is not, therefore, a sound basis for curriculum planning, nor does the analysis on which it is based provide a productive framework for research."  But I think parts of it can be used creatively for effective instruction.     { more about SAPA }

ENGINEERING   (to use-learn-teach Skills for Problem Solving )

Problem-solving skills used for engineering.

Engineering is Elementary ( E i E ) develops activities for students in grades K-8.  To get a feeling for the excitement they want to share with teachers & students, watch an "about EiE" video and explore their website .  To develop its curriculum products, EiE uses research-based Design Principles and works closely with teachers to get field-testing feedback, in a rigorous process of educational design .  During instruction, teachers use a simple 5-phase flexible model of engineering design process "to guide students through our engineering design challenges... using terms [ Ask, Imagine, Plan, Create, Improve ] children can understand."   {plus other websites about EiE }

Project Lead the Way ( PLTW ), another major developer of k-12 curriculum & instruction for engineering and other areas, has a website you can explore to learn about their educational philosophy & programs (at many schools ) & resources and more.  And you can web-search for other websites about PLTW.

Science Buddies , at level of k-12, has tips for science & engineering .

EPICS ( home - about ), at college level, is an engineering program using EPICS Design Process with a framework supplemented by sophisticated strategies from real-world engineering.  EPICS began at Purdue University and is now used at ( 29 schools) (and more with IUCCE ) including Purdue, Princeton, Notre Dame, Texas A&M, Arizona State, UC San Diego, Drexel, and Butler.

DESIGN THINKING   (to use-learn-teach Skills for Problem Solving )

Design Thinking emphasizes the importance of using empathy to solve human-centered problems.

Stanford Institute of Design ( ) is an innovative pioneer in teaching a process of human-centered design thinking that is creative-and-critical with empathy .  In their Design Thinking Bootleg – that's an updated version of their Bootcamp Bootleg – they share a wide variety of attitudes & techniques — about brainstorming and much more — to stimulate productive design thinking with the objective of solving real-world problems.   {their first pioneer was David Kelley }

The wants to "help prepare a generation of students to rise with the challenges of our times."  This goal is shared by many other educators, in k-12 and colleges, who are excited about design thinking.  Although operates at college level, they ( + IDEO ) are active in K-12 education as in their website about Design Thinking in Schools ( FAQ - resources ) that "is a directory [with brief descriptions] of schools and programs that use design thinking in the curriculum for K12 students...  design thinking is a powerful way for today’s students to learn, and it’s being implemented by educators all around the world."     { more about Education for Design Thinking in California & Atlanta & Pittsburgh & elsewhere} [[a note to myself: @ ws and maybe my broad-definition page]]

On twitter, # DTk12 chat is an online community of enthusiastic educators who are excited about Design Thinking ( DT ) for K-12 Education, so they host a weekly twitter chat (W 9-10 ET) and are twitter-active informally 24/7.

PROBLEM-BASED LEARNING   (to use-learn-teach Skills for Problem Solving )

Problem-Based Learning ( PBL ? ) is a way to improve motivation, thinking, and learning.  You can learn more from:

overviews of PBL from U of WA & ;

and (in ERIC Digests) using PBL for science & math plus a longer introduction - challenges for students & teachers (we never said it would be easy!) ;

a deeper examination by John Savery (in PDF & [without abstract] web-page );

Most Popular Papers from The Interdisciplinary Journal of Problem-based Learning ( about IJPBL ).

videos about PBL by Edutopia (9:26) and others ;

a search in ACSD for [problem-based learning] → a comprehensive links-page for Problem-Based Learning and an ACSD-book about...

Problems as Possibilities by Linda Torp and Sara Sage:  Table of Contents - Introduction (for 2nd Edition) - samples from the first & last chapters - PBL Resources (including WeSites in Part IV) .

PBL in Schools:

Samford University uses PBL (and other activities) for Transformational Learning that "emphasizes the whole person, ... helps students grow physically, mentally, and spiritually, and encourages them to value public service as well as personal gain."

In high school education, Problem-Based Learning Design Institute from Illinois Math & Science Academy ( about );  they used to have an impressive PBL Network ( sitemap & web-resources from 2013, and 9-23-2013 story about Kent, WA ) that has mysteriously disappeared. research_ethics

Vanderbilt U has Service Learning thru Community Engagement with Challenges and Opportunities and tips for Teaching Step by Step & Best Practices and Resource-Links for many programs, organizations, articles, and more.

What is PBL?   The answer is " Problem-Based Learning and/or Project-Based Learning " because both meanings are commonly used.  Here are 3 pages (+ Wikipedia) that compare PBL with PBL, examine similarities & differences, consider definitions:

    John Larmer says "we [at Buck Institute for Education which uses Project Based Learning ] decided to call problem-based learning a subset of project-based learning [with these definitions, ProblemBL is a narrower category, so all ProblemBL is ProjectBL, but not vice versa] – that is, one of the ways a teacher could frame a project is to solve a problem, " and concludes that "the semantics aren't worth worrying about, at least not for very long.  The two PBLs are really two sides of the same coin. ...  The bottom line is the same:  both PBLs can powerfully engage and effectively teach your students!"     Chris Campbell concludes, "it is probably the importance of conducting active learning with students that is worthy and not the actual name of the task.  Both problem-based and project-based learning have their place in today’s classroom and can promote 21st Century learning."     Jan Schwartz says "there is admittedly a blurring of lines between these two approaches to education, but there are differences."     Wikipedia has Problem-Based Learning (with "both" in P5BL ) and Project-Based Learning .

i.o.u. - If you're wondering "What can I do in my classroom today ?", eventually (maybe in June 2021) there will be a section for "thinking skills activities" in this page, and in the area for TEACHING ACTIVITIES .

ASA Blue-Sky Banner

8 Chapter 6 Supporting Student Problem-Solving

Across content areas, the standards address problem-solving in the form of being able to improvise, decide, inquire, and research. In fact, math and science standards are premised almost completely on problem-solving and inquiry. According to the literature, however, problem-solving and inquiry are often overlooked or addressed only superficially in classrooms, and in some subject areas, are not attended to at all.


In keeping with a learning focus, this chapter first discusses problem-solving and inquiry to provide a basis from which teachers can provide support for these goals with technology.

What Is Problem-solving?

Whereas production is a process that focuses on an end-product, problem-solving is a process that centers on a problem. Students apply critical and creative thinking skills to prior knowledge during the problem-solving process. The end result of problem-solving is typically some kind of decision, in other words, choosing a solution and then evaluating it.

There are two general kinds of problems. Close-ended problems are those with known solutions to which students can apply a process similar to one that they have already used. For example, if a student understands the single-digit process in adding 2 plus 2 to make 4, she most likely will be able to solve a problem that asks her to add 1 plus 1. Open-ended or loosely structured problems, on the other hand, are those with many or unknown solutions rather than one correct answer. These types of problems require the ability to apply a variety of strategies and knowledge to finding a solution. For example, an open-ended problem statement might read:

A politician has just discovered information showing that a statement he made to the public earlier in the week was incorrect. If he corrects himself he will look like a fool, but if he doesn’t and someone finds out the truth, he will be in trouble. What should he do or say about this?

Obviously, there is no simple answer to this question, and there is a lot of information to consider.

Many textbooks, teachers, and tests present or ask only for the results of problem-solving and not the whole process that students must go through in thinking about how to arrive at a viable solution. As a result, according to the literature, most people use their personal understandings to try to solve open-ended problems, but the bias of limited experience makes it hard for people to understand the trade-offs or contradictions that these problems present. To solve such problems, students need to be able to use both problem-solving skills and an effective inquiry process.

What Is Inquiry?

Inquiry in education is also sometimes called research, investigation, or guided discovery. During inquiry, students ask questions and then search for answers to those questions. In doing so, they come to new understandings in content and language. Although inquiry is an instructional strategy in itself, it is also a central component of problem-solving when students apply their new understandings to the problem at hand. Each question that the problem raises must be addressed by thorough and systematic investigation to arrive at a well-grounded solution. Therefore, the term “problem-solving” can be considered to include inquiry.

For students to understand both the question and ways of looking at the answer(s), resources such as historical accounts, literature, art, and eyewitness experiences must be used. In addition, each resource must be examined in light of what each different type of material contributes to the solution. Critical literacy, or reading beyond the text, then, is a fundamental aspect of inquiry and so of problem-solving. Search for critical literacy resources by using “critical literacy” and your grade level, and be sure to look at the tools provided in this text’s Teacher Toolbox.

What Is Problem-Based Learning?

Problem-based learning (PBL) is a teaching approach that combines critical thinking, problem- solving skills, and inquiry as students explore real-world problems. It is based on unstructured, complex, and authentic problems that are often presented as part of a project. PBL addresses many of the learning goals presented in this text and across the standards, including communication, creativity, and often production.

Research is being conducted in every area from business to education to see how we solve problems, what guides us, what information we have and use during problem-solving, and how we can become more efficient problem solvers. There are competing theories of how people learn to and do solve problems, and much more research needs to be done. However, we do know several things. First, problem-solving can depend on the context, the participants, and the stakeholders. In addition, studies show that content appears to be covered better by “traditional” instruction, but students retain better after problem-solving. PBL has been found effective at teaching content and problem-solving, and the use of technology can make those gains even higher (Chauhan, 2017). Research clearly shows that the more parts of a problem there are, the less successful students will be at solving it. However, effective scaffolding can help to support students’ problem-solving and overcomes some of the potential issues with it (Belland, Walker, Kim, & Lefler, 2017).

The PBL literature points out that both content knowledge and problem-solving skills are necessary to arrive at solutions, but individual differences among students affect their success, too. For example, field-independent students in general do better than field-dependent students in tasks. In addition, students from some cultures will not be familiar with this kind of learning, and others may not have the language to work with it. Teachers must consider all of these ideas and challenges in supporting student problem-solving.

Characteristics of effective technology-enhanced problem-based learning tasks

PBL tasks share many of the same characteristics of other tasks in this book, but some are specific to PBL. Generally, PBL tasks:

Involve learners in gaining and organizing knowledge of content. Inspiration and other concept-mapping tools like the app Popplet are useful for this.

Help learners link school activities to life, providing the “why” for doing the activity.

Give students control of their learning.

Have built-in and just-in-time scaffolding to help students. Tutorials are available all over the Web for content, language, and technology help.

Are fun and interesting.

Contain specific objectives for students to meet along the way to a larger goal.

Have guidance for the use of tools, especially computer technologies.

Include communication and collaboration (described in chapter 3).

Emphasize the process and the content.

Are central to the curriculum, not peripheral or time fillers.

Lead to additional content learning.

Have a measurable, although not necessarily correct, outcome.

More specifically, PBL tasks:

Use a problem that “appeals to human desire for resolution/stasis/harmony” and “sets up need for and context of learning which follows” (IMSA, 2005, p. 2).

Help students understand the range of problem-solving mechanisms available.

Focus on the merits of the question, the concepts involved, and student research plans.

Provide opportunities for students to examine the process of getting the answer (for example, looking back at the arguments).

Lead to additional “transfer” problems that use the knowledge gained in a different context.

Not every task necessarily exhibits all of these characteristics completely, but these lists can serve as guidelines for creating and evaluating tasks.

Student benefits of problem-solving

There are many potential benefits of using PBL in classrooms at all levels; however, the benefits depend on how well this strategy is employed. With effective PBL, students can become more engaged in their learning and empowered to become more autonomous in classroom work. This, in turn, may lead to improved attitudes about the classroom and thus to other gains such as increased abilities for social-problem solving. Students can gain a deeper understanding of concepts, acquire skills necessary in the real world, and transfer skills to become independent and self-directed learners and thinkers outside of school. For example, when students are encouraged to practice using problem-solving skills across a variety of situations, they gain experience in discovering not only different methods but which method to apply to what kind of problem. Furthermore, students can become more confident when their self-esteem and grade does not depend only on the specific answer that the teacher wants. In addition, during the problem-solving process students can develop better critical and creative thinking skills.

Students can also develop better language skills (both knowledge and communication) through problems that require a high level of interaction with others (Verga & Kotz, 2013). This is important for all learners, but especially for ELLs and others who do not have grade-level language skills. For students who may not understand the language or content or a specific question, the focus on process gives them more opportunities to access information and express their knowledge.

The problem-solving process

The use of PBL requires different processes for students and teachers. The teacher’s process involves careful planning. There are many ways for this to happen, but a general outline that can be adapted includes the following steps:

After students bring up a question, put it in the greater context of a problem to solve (using the format of an essential question; see chapter 4) and decide what the outcome should be–a recommendation, a summary, a process?

Develop objectives that represent both the goal and the specific content, language, and skills toward which students will work.

List background information and possible materials and content that will need to be addressed. Get access to materials and tools and prepare resource lists if necessary.

Write the specific problem. Make sure students know what their role is and what they are expected to do. Then go back and check that the problem and task meet the objectives and characteristics of effective PBL and the relevant standards. Reevaluate materials and tools.

Develop scaffolds that will be needed.

Evaluate and prepare to meet individual students’ needs for language, assistive tools, content review, and thinking skills and strategies

Present the problem to students, assess their understanding, and provide appropriate feedback as they plan and carry out their process.

The student process focuses more on the specific problem-solving task. PBL sources list different terms to describe each step, but the process is more or less the same. Students:

Define and frame the problem: Describe it, recognize what is being asked for, look at it from all sides, and say why they need to solve it.

Plan: Present prior knowledge that affects the problem, decide what further information and concepts are needed, and map what resources will be consulted and why.

Inquire: Gather and analyze the data, build and test hypotheses.

Look back: Review and evaluate the process and content. Ask “What do I understand from this result? What does it tell me?”

how to solve problem in education

These steps are summarized in Figure 6.1.

Problem-solving strategies that teachers can demonstrate, model, and teach directly include trial and error, process of elimination, making a model, using a formula, acting out the problem, using graphics or drawing the problem, discovering patterns, and simplifying the problem (e.g., rewording, changing the setting, dividing it into simpler tasks). Even the popular KWL (Know, Want to Know, Learned) chart can help students frame questions. A KWL for a project asking whether a superstore should be built in the community might look like the one in Figure 6.2. Find out more about these strategies at .

Teaching problem-solving in groups involves the use of planning and other technologies. Using these tools, students post, discuss, and reflect on their joint problem-solving process using visual cues that they create. This helps students focus on both their process and the content. Throughout the teacher and student processes, participants should continue to examine cultural, emotional, intellectual, and other possible barriers to problem-solving.

how to solve problem in education

Teachers and Problem-solving

The teacher’s role in PBL

During the teacher’s process of creating the problem context, the teacher must consider what levels of authenticity, complexity, uncertainty, and self-direction students can access and work within. Gordon (1998) broke loosely structured problems into three general types with increasing levels of these aspects. Still in use today, these are:

Academic challenges. An academic challenge is student work structured as a problem arising directly from an area of study. It is used primarily to promote greater understanding of selected subject matter. The academic challenge is crafted by transforming existing curricular material into a problem format.

Scenario challenges. These challenges cast students in real-life roles and ask them to perform these roles in the context of a reality-based or fictional scenario.

Real-life problems. These are actual problems in need of real solutions by real people or organizations. They involve students directly and deeply in the exploration of an area of study. And the solutions have the potential for actual implementation at the classroom, school, community, regional, national, or global level. (p. 3)

To demonstrate the application of this simple categorization, the learning activities presented later in this chapter follow this outline.

As discussed in other chapters in this book, during student work the teacher’s role can vary from director to shepherd, but when the teacher is a co-learner rather than a taskmaster, learners become experts. An often-used term for the teacher’s role in the literature about problem-solving is “coach.” As a coach, the teacher works to facilitate thinking skills and process, including working out group dynamics, keeping students on task and making sure they are participating, assessing their progress and process, and adjusting levels of challenge as students’ needs change. Teachers can provide hints and resources and work on a gradual release of responsibility to learners.

Challenges for teachers

For many teachers, the roles suggested above are easier said than done. To use a PBL approach, teachers must break out of the content-dissemination mode and help their students to do the same. Even when this happens, in many classrooms students have been trained to think that problem-solving is getting the one right answer, and it takes time, practice, and patience for them to understand otherwise. Some teachers feel that they are obligated to cover too much in the curriculum to spend time on PBL or that using real-world problems does not mesh well with the content, materials, and context of the classroom. However, twenty years ago Gordon (1998) noted, “whether it’s a relatively simple matter of deciding what to eat for breakfast or a more complex one such as figuring out how to reduce pollution in one’s community, in life we make decisions and do things that have concrete results. Very few of us do worksheets” (p. 2). He adds that not every aspect of students’ schoolwork needs to be real, but that connections should be made from the classroom to the real world. Educators around the world are still working toward making school more like life.

In addition, many standardized district and statewide tests do not measure process, so students do not want to spend time on it. However, teachers can overcome this thinking by demonstrating to students the ways in which they need to solve problems every day and how these strategies may transfer to testing situations.

Furthermore, PBL tasks and projects may take longer to develop and assess than traditional instruction. However, teachers can start slowly by helping students practice PBL in controlled environments with structure, then gradually release them to working independently. The guidelines in this chapter address some of these challenges.


Obviously, PBL is more than simply giving students a problem and asking them to solve it. The following guidelines describe other issues in PBL.

Designing Problem-Solving Opportunities

The guidelines described here can assist students in developing a PBL opportunity.

Guideline #1: Integrate reading and writing. Although an important part of solving problems, discussion alone is not enough for students to develop and practice problem-solving skills. Effective problem-solving and inquiry require students to think clearly and deeply about content, language, and process. Reading and writing tasks can encourage students to take time to think about these issues and to contextualize their thinking practice. They can also provide vehicles for teachers to understand student progress and to provide concrete feedback. Students who have strengths in these areas will be encouraged and those who need help can learn from their stronger partners, just as those who have strengths in speaking can model for and assist their peers during discussion. Even in courses that do not stress reading and writing, integrating these skills into tasks and projects can promote successful learning.

Guideline #2: Avoid plagiarism. The Internet is a great resource for student inquiry and problem-solving. However, when students read and write using Internet resources, they often cut and paste directly from the source. Sometimes this is an innocent mistake; students may be uneducated about the use of resources, perhaps they come from a culture where the concept of ownership is completely different than in the United States, or maybe their language skills are weak and they want to be able to express themselves better. In either case, two strategies can help avoid plagiarism: 1) The teacher can teach directly about plagiarism and copyright issues. Strategies including helping students learn how to cite sources, paraphrase, summarize, and restate; 2) The teacher can be as familiar as possible with the resources that students will use and check for plagiarism when it is suspected. To do so, the teacher can enter a sentence or phrase into any Web browser with quote marks around it and if the entry is exact, the original source will come up in the browser window. Essay checkers such as Turnitin ( are also available online that will check a passage or an entire essay.

Guideline #3: Do not do what students can do. Teaching, and particularly teaching with technology, is often a difficult job, due in part to the time it takes teachers to prepare effective learning experiences. Planning, developing, directing, and assessing do not have to be solely the teacher’s domain, however. Students should take on many of these responsibilities, and at the same time gain in problem-solving, language, content, critical thinking, creativity, and other crucial skills. Teachers do not always need to click the mouse, write on the whiteboard, decide

criteria for a rubric, develop questions, decorate the classroom, or perform many classroom and learning tasks. Students can take ownership and feel responsibility. Although it is often difficult for teachers to give up some of their power, the benefits of having more time and shared responsibility can be transformational. Teachers can train themselves to ask, “Is this something students can do?”

Guideline #4: Make mistakes okay. Problem-solving often involves coming to dead ends, having to revisit data and reformulate ideas, and working with uncertainty. For students used to striving for correct answers and looking to the teacher as a final authority, the messiness of problem-solving can be disconcerting, frustrating, and even scary. Teachers can create environments of acceptance where reasoned, even if wrong, answers are recognized, acknowledged, and given appropriate feedback by the teacher and peers. Teachers already know that students come to the task with a variety of beliefs and information. In working with students’ prior knowledge, they can model how to be supportive of students’ faulty ideas and suggestions. They can also ask positive questions to get the students thinking about what they still need to know and how they can come to know it. They can both encourage and directly teach students to be supportive of mistakes and trials as part of their team-building and leadership skills.

In addition, teachers may need to help students to understand that even a well-reasoned argument or answer can meet with opposition. Students must not feel that they have made a bad decision just because everyone else, particularly the teacher, does not agree. Teachers can model for students that they are part of the learning process and they are impartial as to the outcome when the student’s position has been well defended.


As with all the goals in this book, the focus of technology in problem-solving is not on the technology itself but on the learning experiences that the technology affords. Different tools exist to support different parts of the process. Some are as simple as handouts that students can print and complete, others as complex as modeling and visualization software. Many software tools that support problem-solving are made for experts in the field and are relatively difficult to learn and use. Examples of these more complicated programs include many types of computer-aided design software, advanced authoring tools, and complex expert systems. In the past there were few software tools for K–12 students that addressed the problem-solving process directly and completely, but more apps are being created all the time that do so. See the Teacher Tools for this text for examples.

Simple inquiry tools that help students perform their investigations during PBL are much more prevalent. The standard word processor, database, concept mapping/graphics and spreadsheet software can all assist students in answering questions and organizing and presenting data, but there are other tools more specifically designed to support inquiry. Software programs that can be used within the PBL framework are mentioned in other chapters in this text. These programs, such as the Tom Snyder Productions/Scholastic programs mentioned in chapter 2 address the overlapping goals of collaboration, production, critical thinking, creativity, and problem-solving. Interestingly, even video games might be used as problem-solving tools. Many of these games require users to puzzle out directions, to find missing artifacts, or to follow clues that are increasingly difficult to find and understand. One common tool with which students at all levels might be familiar is Minecraft (Mojang; The Internet has as many resources as teachers might need to use Minecraft across the disciplines to teach whole units and even gamify the classroom.

The following section presents brief descriptions of tools that can support the PBL process. The examples are divided into stand-alone tools that can be used on one or more desktops and Web-based tools.

Stand-Alone Tools

Example 1: Fizz and Martina’s Math Adventures (Tom Snyder Productions/Scholastic)

Students help Fizz and Martina, animated characters in this software, to solve problems by figuring out which data is relevant, performing appropriate calculations, and presenting their solutions. The five titles in this series are perfect for a one-computer classroom. Each software package combines computer-based video, easy navigation, and handouts and other resources as scaffolds. This software is useful in classrooms with ELLs because of the combination of visual, audio, and text-based reinforcement of input. It is also accessible to students with physical disabilities because it can run on one computer; students do not have to actually perform the mouse clicks to run the software themselves.

This software is much more than math. It includes a lot of language, focuses on cooperation and collaboration in teams, and promotes critical thinking as part of problem-solving. Equally important, it helps students to communicate mathematical ideas orally and in writing. See Figure 6.6 for the “getting started” screen from Fizz and Martina to view some of the choices that teachers and students have in using this package.

Example 2: I Spy Treasure Hunt, I Spy School Days, I Spy Spooky Mansion (Scholastic)

The language in these fun simulations consists of isolated, discrete words and phrases, making these programs useful for word study but not for overall concept learning. School Days, for example, focuses on both objects and words related to school. However, students work on extrapolation, trial and error, process of elimination, and other problem-solving strategies. It is difficult to get students away from the computer once they start working on any of the simulations in this series. Each software package has several separate hunts with a large number of riddles that, when solved, allow the user to put together a map or other clues to find the surprise at the end. Some of the riddles involve simply finding an item on the screen, but others require more thought such as figuring out an alternative representation for the item sought or using a process of elimination to figure out where to find it. All of the riddles are presented in both text and audio and can be repeated as many times as the student requires, making it easier for language learners, less literate students, and students with varied learning preferences to access the information. Younger students can also work with older students or an aide for close support so that students are focused. Free versions of the commercial software and similar types of programs such as escape rooms (e.g., escapes at 365 Escape {] and can be found across the Web.

There are many more software packages like these that can be part of a PBL task. See the Teacher Toolbox for ideas.

Example 3: Science Court (Tom Snyder Productions/Scholastic)

Twelve different titles in this series present humorous court cases that students must help to resolve. Whether the focus is on the water cycle, soil, or gravity, students use animated computer-based video, hands-on science activities, and group work to learn and practice science and the inquiry process. As students work toward solving the case, they examine not only the facts but also their reasoning processes. Like Fizz and Martina and much of TSP’s software, Science Court uses multimedia and can be used in the one-computer classroom (as described in chapter 2), making it accessible to diverse students.

Example 4: Geographic Information Systems (GIS)

The use of GIS to track threatened species, map hazardous waste or wetlands in the community, or propose solutions for other environmental problems supports student “spatial literacy and geographic competence” (Baker, 2005, n.p.), in addition to experimental and inquiry techniques, understanding of scale and resolution, and verification skills. Popular desktop-based GIS that students can access include Geodesy and ArcVoyager; many Web-based versions also exist. A GIS is not necessarily an easy tool to learn or use, but it can lead to real-world involvement and language, concept, and thinking skills development.

Web-Based Tools

Many technology-enhanced lessons and tools on the Web come premade. In other words, they were created for someone else’s students and context. Teachers must adapt these tools to fit their own teaching styles, student needs, goals, resources, and contextual variables. Teachers must learn to modify these resources to make them their own and help them to work effectively in their unique teaching situation. With this in mind, teachers can take advantage of the great ideas in the Web-based tools described below.

Example 1: WebQuest

A WebQuest is a Web-based inquiry activity that is highly structured in a preset format. Most teachers are aware of WebQuests—a Web search finds them mentioned in every state, subject area, and grade level, and they are popular topics at conferences and workshops. Created by Bernie Dodge and Tom March in 1995 (see, this activity has proliferated wildly.

Each WebQuest has six parts. The Quest starts with an introduction to excite student interest. The task description then explains to students the purpose of the Quest and what the outcome will be. Next, the process includes clear steps and the scaffolds, including resources, that students will need to accomplish the steps. The evaluation section provides rubrics and assessment guidelines, and the conclusion section provides closure. Finally, the teacher section includes hints and tips for other teachers to use the WebQuest.

Advantages to using WebQuests as inquiry and problem-solving tools include:

Students are focused on a specific topic and content and have a great deal of scaffolding.

Students focus on using information rather than looking for it, because resources are preselected.

Students use collaboration, critical thinking, and other important skills to complete their Quest.

Teachers across the United States have reported significant successes for students participating in Quests. However, because Quests can be created and posted by anyone, many found on the Web do not meet standards for inquiry and do not allow students autonomy to work in authentic settings and to solve problems. Teachers who want to use a WebQuest to meet specific goals should examine carefully both the content and the process of the Quest to make sure that they offer real problems as discussed in this chapter. A matrix of wonderful Quests that have been evaluated as outstanding by experts is available on the site.

Although very popular, WebQuests are also very structured. This is fine for students who have not moved to more open-ended problems, but to support a higher level of student thinking, independence, and concept learning, teachers can have students work in teams on Web Inquiry Projects ( ).

Example 2: Virtual Field Trips

Virtual field trips are great for concept learning, especially for students who need extra support from photos, text, animation, video, and audio. Content for field trips includes virtual walks through museums, underwater explorations, house tours, and much more (see online field trips suggested by Steele-Carlin [2014] at ). However, the format of virtual field trips ranges from simple postcard-like displays to interactive video simulations, and teachers must review the sites before using them to make sure that they meet needs and goals.

With a virtual reality headset (now available for sale cheaply even at major department stores), teachers and students can go on Google Expeditions ( ), 3D immersive field trips from Nearpod ( ), and even create their using resources from Larry Ferlazzo’s “Best Resources for Finding and Creating Virtual Field Trips” at

Example 3: Raw Data Sites

Raw data sites abound on the Web, from the U.S. Census to the National Climatic Data Center, from databases full of language data to the Library of Congress. These sites can be used for content learning and other learning goals. Some amazing sites can be found where students can collect their own data. These include sites like John Walker’s (2003) Your Sky ( and Water on the Web (2005, When working with raw data students have to draw their own conclusions based on evidence. This is another important problem-solving skill. Note that teachers must supervise and verify that data being entered for students across the world is accurate or

Example 4: Filamentality

Filamentality ( presents an open-ended problem with a lot of scaffolding. Students and/or teachers start with a goal and then create a Web site in one of five formats that range in level of inquiry and problem-solving from treasure hunts to WebQuests. The site provides lots of help and hints for those who need it, including “Mentality Tips” to help accomplish goals. It is free and easy to use, making it accessible to any teacher (or student) with an Internet connection.

Example 5: Problem Sites

Many education sites offer opportunities for students to solve problems. Some focus on language (e.g., why do we say “when pigs fly”?) or global history (e.g., what’s the real story behind Tut’s tomb?); see, for example, the resources and questions in The Ultimate STEM Guide for Students at These problems range in level from very structured, academic problems to real-world unsolved mysteries.

The NASA SciFiles present problems in a format similar to WebQuests at In other parts of the Web site there are video cases, quizzes, and tools for problem-solving.

There is an amazing number of tools, both stand-alone and Web-based, to support problem-solving and inquiry, but no tool can provide all the features that meet the needs of all students. Most important in tool choice is that it meets the language, content, and skills goals of the project and students and that there is a caring and supportive teacher guiding the students in their choice and use of the tool.

Teacher Tools

There are many Web sites addressed specifically to teachers who are concerned that they are not familiar enough with PBL or that they do not have the tools to implement this instructional strategy. For example, from Now On at toolbox.html provides specific suggestions for how to integrate technology and inquiry. Search “problem-solving” on the amazing Edutopia site ( ) for ideas, guidelines, examples, and more.


In addition to using the tools described in the previous section to teach problem-solving and inquiry, teachers can develop their own problems according to the guidelines throughout this chapter. Gordon’s (1998) scheme of problem-solving levels (described previously)—academic, scenario, and real life—is a simple and useful one. Teachers can refer to it to make sure that they are providing appropriate structure and guidance and helping students become independent thinkers and learners. This section uses Gordon’s levels to demonstrate the variety of problem-solving and inquiry activities in which students can participate. Each example is presented with the question/problem to be answered or solved, a suggestion of a process that students might follow, and some of the possible electronic tools that might help students to solve the problem.

Academic problems

Example 1: What Will Harry Do? (Literature)

Problem: At the end of the chapter, Harry Potter is faced with a decision to make. What will he do?

Process: Discuss the choices and consequences. Choose the most likely, based on past experience and an understanding of the story line. Make a short video to present the solution. Test it against Harry’s decision and evaluate both the proposed solution and the real one.

Tools: Video camera and video editing software.

Example 2: Treasure Hunt (History)

Problem: Students need resources to learn about the Civil War.

Process: Teacher provides a set of 10 questions to find specific resources online.

Tools: Web browser.

Example 3: Problem of the Week (Math)

Problem: Students should solve the math problem of the week.

Process: Students simplify the problem, write out their solution, post it to the site for feedback, then revise as necessary.

Tools: Current problems from the Math Forum@Drexel,

Example 1: World’s Best Problem Solver

Problem: You are a member of a committee that is going to give a prestigious international award for the world’s best problem-solver. You must nominate someone and defend your position to the committee, as the other committee members must do.

Process: Consult and list possible nominees. Use the process of elimination to determine possible nominees. Research the nominees using several different resources. Weigh the evidence and make a choice. Prepare a statement and support.

Tools: has over 25,000 biographies, and Infoplease ( and the Biographical Dictionary ( provide biographies divided into categories for easy searching.

Example 2: Curator

Problem: Students are a committee of curators deciding what to hang in a new community art center. They have access to any painting in the world but can only hang 15 pieces in their preset space. Their goals are to enrich art appreciation in the community, make a name for their museum, and make money.

Process: Students frame the problem, research and review art from around the world, consider characteristics of the community and other relevant factors, choose their pieces, and lay them out for presentation to the community.

Tools: Art museum Web sites, books, and field trips for research and painting clips; computer-aided design, graphics, or word processing software to lay out the gallery for viewing.

Example 3: A New National Anthem

Problem: Congress has decided that the national anthem is too difficult to remember and sing and wants to adopt a new, easier song before the next Congress convenes. They want input from musicians across the United States. Students play the roles of musicians of all types.

Process: Students define the problem (e.g., is it that “The Star-Spangled Banner” is too difficult or that Congress needs to be convinced that it is not?). They either research and choose new songs or research and defend the current national anthem. They prepare presentations for members of Congress.

Tools: Music sites and software, information sites on the national anthem.

Real-life problems

Example 1: Racism in School

Problem: There have been several incidents in our school recently that seem to have been racially motivated. The principal is asking students to consider how to make our school a safe learning environment for all students.

Process: Determine what is being asked—the principal wants help. Explore the incidents and related issues. Weigh the pros and cons of different solutions. Prepare solutions to present to the principal.

Tools: Web sites and other resources about racism and solutions, graphic organizers to organize the information, word processor or presentation software for results. Find excellent free tools for teachers and students at the Southern Poverty Law Center’s Teaching Tolerance Web site at

Example 2: Homelessness vs. Education

Problem: The state legislature is asking for public input on the next budget. Because of a projected deficit, political leaders are deciding which social programs, including education and funding for the homeless, should be cut and to what extent. They are interested in hearing about the effects of these programs on participants and on where cuts could most effectively be made.

Process: Decide what the question is (e.g., how to deal with the deficit? How to cut education or funding for the homeless? Which programs are more important? Something else?). Perform a cost-benefit analysis using state data. Collect other data by interviewing and researching. Propose and weigh different solution schemes and propose a suggestion. Use feedback to improve or revise.

Tools: Spreadsheet for calculations, word processor for written solution, various Web sites and databases for costs, electronic discussion list or email for interviews.

Example 3: Cleaning Up

Problem: Visitors and residents in our town have been complaining about the smell from the university’s experimental cattle farms drifting across the highway to restaurants and stores in the shopping center across the street. They claim that it makes both eating and shopping unpleasant and that something must be done.

Process: Conduct onsite interviews and investigation. Determine the source of the odor. Measure times and places where the odor is discernible. Test a variety of solutions. Choose the most effective solution and write a proposal supported by a poster for evidence.

Tools: Online and offline sources of information on cows, farming, odor; database to organize and record data; word processing and presentation software for describing the solution.

These activities can all be adapted and different tools and processes used. As stated previously, the focus must be both on the content to be learned and the skills to be practiced and acquired. More problem-solving activity suggestions and examples can be found at site at


Many of the assessments described in other chapters of this text, for example, rubrics, performance assessments, observation, and student self-reflection, can also be employed to assess problem-solving and inquiry. Most experts on problem-solving and inquiry agree that schools need to get away from testing that does not involve showing process or allowing students to problem-solve; rather, teachers should evaluate problem-solving tasks as if they were someone in the real-world context of the problem. For example, if students are studying an environmental issue, teachers can evaluate their work throughout the project from the standpoint of someone in the field, being careful that their own biases do not cloud their judgment on controversial issues. Rubrics, multiple-choice tests, and other assessment tools mentioned in other chapters of this text can account for the multiple outcomes that are possible in content, language, and skills learning. These resources can be used as models for assessing problem-solving skills in a variety of tasks. Find hundreds of problem-solving rubrics by searching the Web for “problem-solving rubrics” or check Pinterest for teacher-created rubrics.

In addition to the techniques mentioned above, many teachers suggest keeping a weekly problem-solving notebook (also known as a math journal or science journal), in which students record problem solutions, strategies they used, similarities with other problems, extensions of the problem, and an investigation of one or more of the extensions. Using this notebook to assess students’ location and progress in problem-solving could be very effective, and it could even be convenient if learners can keep them online as a blog or in a share cloud space.


Research and Plagiarism

We’ve been working on summaries all year and the idea that copying word for word is plagiarism. When they come to me (sixth grade) they continue to struggle with putting things in their own words so [Microsoft Encarta] Researcher not only provides a visual (a reference in APA format) that this is someone else’s work, but allows me to see the information they used to create their report as Researcher is an electronic filing system. It’s as if students were printing out the information and keeping it in a file that they will use to create their report. But instead of having them print everything as they go to each individual site they can copy and paste until later. When they finish their research they come back to their file, decide what information they want to use, and can print it out all at once. This has made it easier for me because the students turn this in with their report. So, I would say it not only allows students to learn goals of summarizing, interpreting, or synthesizing, it helps me to address them in greater depth and it’s easier on me! (April, middle school teacher)

I evaluated a WebQuest for middle elementary (third–fourth grades), although it seems a little complicated for that age group. The quest divides students into groups and each person in the group is given a role to play (a botanist, museum curator, ethnobotanist, etc.). The task is for students to find out how plants were used for medicinal purposes in the Southwest many years ago. Students then present their findings, in a format that they can give to a national museum. Weird. It was a little complicated and not well done. I liked the topic and thought it was interesting, but a lot of work would need to be done to modify it so that all students could participate. (Jennie, first-grade teacher).


Define problem-solving and inquiry.

The element that distinguishes problem-solving or problem-based learning from other strategies is that the focal point is a problem that students must work toward solving. A proposed solution is typically the outcome of problem-solving. During the inquiry part of the process, students ask questions and then search for answers to those questions.

Understand the interaction between problem-solving and other instructional goals. Although inquiry is also an important instructional strategy and can stand alone, it is also a central component of problem-solving because students must ask questions and investigate the answers to solve the problem. In addition, students apply critical and creative thinking skills to prior knowledge during the problem-solving process, and they communicate, collaborate, and often produce some kind of concrete artifact.

Discuss guidelines and tools for encouraging effective student problem-solving.

It is often difficult for teachers to not do what students can do, but empowering students in this way can lead to a string of benefits. Other guidelines, such as avoiding plagiarism, integrating reading and writing, and making it okay for students to make mistakes, keep the problem-solving process on track. Tools to assist in this process range from word processing to specially designed inquiry tools.

Create and adapt effective technology-enhanced tasks to support problem-solving. Teachers can design their own tasks following guidelines from any number of sources, but they can also find ready-made problems in books, on the Web, and in some software pack-ages. Teachers who do design their own have plenty of resources available to help. A key to task development is connecting classroom learning to the world outside of the classroom.

Assess student technology-supported problem-solving.

In many ways the assessment of problem-solving and inquiry tasks is similar to the assessment of other goals in this text. Matching goals and objectives to assessment and ensuring that students receive formative feedback throughout the process will make success more likely.

Baker, T. (2005). The history and application of GIS in education. KANGIS: K12 GIS Community. Available from

Belland, B., Walker, A., Kim, N., & Lefler, M. (2017). Synthesizing results from empirical research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational Research, 87(2), pp. 309-344.

Chauhan, S. (2017). A meta-analysis of the impact of technology on learning effectiveness of elementary students. Computers & Education, 105, pp. 14-30.

Dooly, M. (2005, March/April). The Internet and language teaching: A sure way to interculturality? ESL Magazine, 44, 8–10.

Gordon, R. (1998, January).Balancing real-world problems with real-world results. Phi Delta Kappan, 79(5), 390–393. [electronic version]

IMSA (2005). How does PBL compare with other instructional approaches? Available: http://www2

Molebash, P., & Dodge, B. (2003). Kickstarting inquiry with WebQuests and web inquiry projects. Social Education, 671(3), 158–162.

Verga, L., & Kotz, S. A. (2013). How relevant is social interaction in second language learning? Frontiers in Human Neuroscience, 7, 550.

Creative Commons License

Share This Book

Feedback/errata, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Increase Font Size

Educational leaders’ problem-solving for educational improvement: Belief validity testing in conversations

  • Open access
  • Published: 01 October 2021
  • volume  24 ,  pages 133–181 ( 2023 )

You have full access to this open access article

  • Claire Sinnema   ORCID: 1 ,
  • Frauke Meyer 1 ,
  • Deidre Le Fevre 1 ,
  • Hamish Chalmers 1 &
  • Viviane Robinson 1  

11k Accesses

5 Citations

22 Altmetric

Explore all metrics

Cite this article

Educational leaders’ effectiveness in solving problems is vital to school and system-level efforts to address macrosystem problems of educational inequity and social injustice. Leaders’ problem-solving conversation attempts are typically influenced by three types of beliefs—beliefs about the nature of the problem, about what causes it, and about how to solve it. Effective problem solving demands testing the validity of these beliefs—the focus of our investigation. We analyzed 43 conversations between leaders and staff about equity related problems including teaching effectiveness. We first determined the types of beliefs held and the validity testing behaviors employed drawing on fine-grained coding frameworks. The quantification of these allowed us to use cross tabs and chi-square tests of independence to explore the relationship between leaders’ use of validity testing behaviors (those identified as more routine or more robust, and those relating to both advocacy and inquiry) and belief type. Leaders tended to avoid discussion of problem causes, advocate more than inquire, bypass disagreements, and rarely explore logic between solutions and problem causes. There was a significant relationship between belief type and the likelihood that leaders will test the validity of those beliefs—beliefs about problem causes were the least likely to be tested. The patterns found here are likely to impact whether micro and mesosystem problems, and ultimately exo and macrosystem problems, are solved. Capability building in belief validity testing is vital for leadership professional learning to ensure curriculum, social justice and equity policy aspirations are realized in practice.

Avoid common mistakes on your manuscript.

This study examines the extent to which leaders, in their conversations with others, test rather than assume the validity of their own and others’ beliefs about the nature, causes of, and solutions to problems of teaching and learning that arise in their sphere of responsibility. We define a problem as a gap between the current and desired state, plus the demand that the gap be reduced (Robinson, 1993 ). We position this focus within the broader context of educational change, and educational improvement in particular, since effective discussion of such problems is central to improvement and vital for addressing issues of educational equity and social justice.

Educational improvement and leaders’ role in problem solving

Educational leaders work in a discretionary problem-solving space. Ball ( 2018 ) describes discretionary spaces as the micro level practices of the teacher. It is imperative to attend to what happens in these spaces because the specific talk and actions that occur in particular moments (for example, what the teacher says or does when one student responds in a particular way to his or her question) impact all participants in the classroom and shape macro level educational issues including legacies of racism, oppression, and marginalization of particular groups of students. A parallel exists, we argue, for leaders’ problem solving—how capable leaders are at dealing with micro-level problems in the conversational moment impacts whether a school or network achieves its improvement goals. For example, how a leader deals with problems with a particular teacher or with a particular student or group of students is subtly but strongly related to the solving of equity problems at the exo and macro levels. Problem solving effectiveness is also related to challenges in the realization of curriculum reform aspirations, including curriculum reform depth, spread, reach, and pace (Sinnema & Stoll, 2020b ).

The conversations leaders have with others in their schools in their efforts to solve educational problems are situated in a broader environment which they both influence and are influenced by. We draw here on Bronfonbrenner’s ( 1992 ) ecological systems theory to construct a nested model of educational problem solving (see Fig.  1 ). Bronfenbrenner focused on the environment around children, and set out five interrelated systems that he professed influence a child’s development. We propose that these systems can also be used to understand another type of learner—educators, including leaders and teachers—in the context of educational problem solving.

figure 1

Nested model of educational problem solving

Bronfenbrenner’s ( 1977 ) microsystem sets out the immediate environment, parents, siblings, teachers, and peers as influencers of and influenced by children. We propose the micro system for educators to include those they have direct contact with including their students, other teachers in their classroom and school, the school board, and the parent community. Bronfenbrenner’s meso system referred to the interactions between a child’s microsystems. In the same way, when foregrounding the ecological system around educators, we suggest attention to the problems that occur in the interactions between students, teachers, school leaders, their boards, and communities. In the exo system, Bronfenbrenner directs attention to other social structures (formal and informal), which do not themselves contain the child, but indirectly influence them as they affect one of the microsystems. In the same way, we suggest educational ministries, departments and agencies function to influence educators. The macro system as theorized by Bronfenbrenner focuses on how child development is influenced by cultural elements established in society, including prevalent beliefs, attitudes, and perceptions. In our model, we recognise how such cultural elements of Bronfenbrenner’s macro system also relate to educators in that dominant and pervasive beliefs, attitudes and perceptions create and perpetuate educational problems, including those relating to educational inequity, bias, racism, social injustice, and underachievement. The chronosystem, as Bronfenbrenner describes, shows the role of environmental changes across a lifetime, which influences development. In a similar way, educators′ professional transitions and professional milestones influence and are influenced by other system levels, and in the context of our work, their problem solving approaches.

Leaders’ effectiveness in discussions about problems related to the micro and mesosystem contributes greatly to the success of exosystem reform efforts, and those efforts, in turn, influence the beliefs, attitudes, and ideologies of the macrosystem. As Fig.  1 shows, improvement goals (indicated by the arrows moving from the current to a desired state) in the exo or macrosystem are unlikely to be achieved without associated improvement in the micro and mesosystem involving students, teachers, and groups of teachers, schools and their boards and parent communities. Similarly, the level of improvement in the macro and exosystems is limited by the extent to which more improvement goals at the micro and mesosystem are achieved through solving problems relating to students’ experience and school and classroom practices including curriculum, teaching, and assessment. As well as drawing on Bronfenbrenner’s ecological systems theory, our nested model of problem solving draws on problem solving theory to draw attention to how gaps between current and desired states at each of the system levels also influence each other (Newell & Simon, 1972 ). Efforts to solve problems in any one system (to move from current state toward a more desired state) are supported by similar moves at other interrelated systems. For example, the success of a teacher seeking to solve a curriculum problem (demand from parents to focus on core knowledge in traditional learning domains, for example)—a problem related to the microsystem and mesosystem—will be influenced by how similar problems are recognised, attended to, and solved by those in the ministries, departments and agencies in the exosystem.

In considering the role of educational leaders in this nested model of problem solving, we take a capability perspective (Mumford et al., 2000 ) rather than a leadership style perspective (Bedell-Avers et al., 2008 ). School leaders (including those with formal and informal leadership positions) require particular capabilities if they are to enact ambitious policies and solve complex problems related to enhancing equity for marginalized and disadvantaged groups of students (Mavrogordato & White, 2020 ). Too often, micro and mesosystem problems remain unsolved which is problematic not only for those directly involved, but also for the resolution of the related exo and macrosystem problems. The ill-structured nature of the problems school leaders face, and the social nature of the problem-solving process, contribute to the ineffectiveness of leaders’ problem-solving efforts and the persistence of important microsystem and mesosystem problems in schools.

Ill-structured problems

The problems that leaders need to solve are typically ill-structured rather than clearly defined, complex rather that than straight-forward, and adaptive rather than routine challenges (Bedell-Avers et al., 2008 ; Heifetz et al., 2009 ; Leithwood & Stager, 1989 ; Leithwood & Steinbach, 1992 , 1995 ; Mumford & Connelly, 1991 ; Mumford et al., 2000 ; Zaccaro et al., 2000 ). As Mumford and Connelly explain, “even if their problems are not totally unprecedented, leaders are, […] likely to be grappling with unique problems for which there is no clear-cut predefined solution” (Mumford & Connelly, 1991 , p. 294). Most such problems are difficult to solve because they can be construed in various ways and lack clear criteria for what counts as a good solution. Mumford et al. ( 2000 ) highlight the particular difficulties in solving ill-structured problems with regard to accessing, evaluating and using relevant information:

Not only is it difficult in many organizational settings for leaders to say exactly what the problem is, it may not be clear exactly what information should be brought to bear on the problem. There is a plethora of available information in complex organizational systems, only some of which is relevant to the problem. Further, it may be difficult to obtain accurate, timely information and identify key diagnostic information. As a result, leaders must actively seek and carefully evaluate information bearing on potential problems and goal attainment. (p. 14)

Problems in schools are complex. Each single problem can comprise multiple educational dimensions (learners, learning, curriculum, teaching, assessment) as well as relational, organizational, psychological, social, cultural, and political dimensions. In response to a teaching problem, for example, a single right or wrong answer is almost never at play; there are typically countless possible ‘responses’ to the problem of how to teach effectively in any given situation.

Problem solving as socially situated

Educational leaders’ problem solving is typically social because multiple people are usually involved in defining, explaining, and solving any given problem (Mumford et al., 2000 ). When there are multiple parties invested in addressing a problem, they typically hold diverse perspectives on how to describe (frame, perceive, and communicate about problems), explain (identify causes which lead to the problem), and solve the problem. Argyris and Schön ( 1974 ) argue that effective leaders must manage the complexity of integrating multiple and diverse perspectives, not only because all parties need to be internally committed to solutions, but also because quality solutions rely on a wide range of perspectives and evidence. Somewhat paradoxically, while the multiple perspectives involved in social problem solving add to their inherent complexity, these perspectives are a resource for educational change, and for the development of more effective solutions (Argyris & Schön, 1974 ). The social nature of problem solving requires high trust so participants can provide relevant, accurate, and timely information (rather than distort or withhold it), recognize their interdependence, and avoid controlling others. In high trust relationships, as Zand’s early work in this field established, “there is less socially generated uncertainty and problems are solved more effectively” (Zand, 1972 , p. 238).

Leaders’ capabilities in problem solving

Leadership research has established the centrality of capability in problem solving to leadership effectiveness generally (Marcy & Mumford, 2010 ; Mumford et al., 2000 , 2007 ) and to educational leadership in particular. Leithwood and Stager ( 1989 ), for example, consider “administrator’s problem-solving processes as crucial to an understanding of why principals act as they do and why some principals are more effective than others” (p. 127). Similarly, Robinson ( 1995 , 2001 , 2010 ) positions the ability to solve complex problems as central to all other dimensions of effective educational leadership. Unsurprisingly, problem solving is often prominent in standards for school leaders/leadership and is included in tools for the assessment of school leadership (Goldring et al., 2009 ). Furthermore, its importance is heightened given the increasing demand and complexity in standards for teaching (Sinnema, Meyer & Aitken, 2016) and the trend toward leadership across networks of schools (Sinnema, Daly, Liou, & Rodway, 2020a ) and the added complexity of such problem solving where a system perspective is necessary.

Empirical research on leaders’ practice has revealed that there is a need for capability building in problem solving (Le Fevre et al., 2015 ; Robinson et al., 2020 ; Sinnema et al., 2013 ; Sinnema et al., 2016 ; Smith, 1997 ; Spillane et al., 2009 ; Timperley & Robinson, 1998 ; Zaccaro et al., 2000 ). Some studies have compared the capability of leaders with varying experience. For example, Leithwood and Stager ( 1989 ) noted differences in problem solving approaches between novice and expert principals when responding to problem scenarios, particularly when the scenarios described ill-structured problems. Principals classified as ‘experts’ were more likely to collect information rather than make assumptions, and perceived unstructured problems to be manageable, whereas typical principals found these problems stressful. Expert principals also consulted extensively to get relevant information and find ways to deal with constraints. In contrast, novice principals consulted less frequently and tended to see constraints as obstacles (Leithwood & Stager, 1989 ). Allison and Allison ( 1993 ) reported that while experienced principals were better than novices at developing abstract problem-solving goals, they were less interested in the detail of how they would pursue these goals. Similar differences were found in Spillane et al.’s ( 2009 ) work that found expert principals to be better at interpreting problems and reflecting on their own actions compared with aspiring principals. More recent work (Sinnema et al., 2021 ) highlights that educators perceptions of discussion quality is positively associated with both new learning for the educator (learning that influences their practice) and improved practice (practices that reach students)—the more robust and helpful educators report their professional discussion to be, the more likely they are to report improvement in their practice. This supports the demand for quality conversation in educational teams.

Solving problems related to teaching and learning that occur in the micro or mesosystem usually requires conversations that demand high levels of interpersonal skill. Skill development is important because leaders tend to have difficulty inquiring deeply into the viewpoints of others (Le Fevre & Robinson, 2015 ; Le Fevre et al., 2015 ; Robinson & Le Fevre, 2011 ). In a close analysis of 43 conversation transcripts, Le Fevre et al. ( 2015 ) showed that when leaders anticipated or encountered diverse views, they tended to ask leading or loaded rather than genuine questions. This pattern was explained by their judgmental thinking, and their desire to avoid negative emotion and stay in control of the conversation. In a related study of leaders’ conversations, a considerable difference was found between the way educational leaders described their problem before and during the conversation with those involved (Sinnema et al., 2013 ). Prior to the conversation, privately, they tended to describe their problem as more serious and more urgent than they did in the conversation they held later with the person concerned.

One of the reasons for the mismatch between their private descriptions and public disclosures was the judgmental framing of their beliefs about the other party’s intentions, attitudes, and/or motivations (Peeters & Robinson, 2015 ). If leaders are not willing or able to reframe such privately-held beliefs in a more respectful manner, they will avoid addressing problems through fear of provoking negative emotion, and neither party will be able to critique the reasoning that leads to the belief in question (Robinson et al., 2020 ). When that happens, beliefs based on faulty reasoning may prevail, problem solutions may be based only on that which is discussable, and the problem may persist.

A model of effective problem-solving conversations

We present below a normative model of effective problem-solving conversations (Fig.  2 ) in which testing the validity of relevant beliefs plays a central role. Leaders test their beliefs about a problem when they draw on a set of validity testing behaviors and enact those behaviors, through their inquiry and advocacy, in ways that are consistent with the three interpersonal values included in the model. The model proposes that these processes increase the effectiveness of social problem solving, with effectiveness understood as progressing the task of solving the problem while maintaining or improving the leader’s relationship with those involved. In formulating this model, we drew on the previously discussed research on problem solving and theories of interpersonal and organisational effectiveness.

figure 2

Model of effective problem-solving conversations

The role of beliefs in problem solving

Beliefs are important in the context of problem solving because they shape decisions about what constitutes a problem and how it can be explained and resolved. Beliefs link the object of the belief (e.g., a teacher’s planning) to some attribute (e.g., copied from the internet). In the context of school problems these attributes are usually tightly linked to a negative evaluation of the object of the belief (Fishbein & Ajzen, 1975 ). Problem solving, therefore, requires explicit attention by leaders to the validity of the information on which their own and others’ beliefs are based. The model draws on the work of Mumford et al. ( 2000 ) by highlighting three types of beliefs that are central to how people solve problems—beliefs about whether and why a situation is problematic (we refer to these as problem description beliefs); beliefs about the precursors of the problem situation (we refer to these as problem explanation beliefs); and beliefs about strategies which could, would, or should improve the situation (we refer to these as problem solution beliefs). With regard to problem explanation beliefs, it is important that attention is not limited to surface level factors, but also encompasses consideration of deeper related issues in the broader social context and how they contribute to any given problem.

The role of values in problem-solving conversations

Figure  2 proposes that problem solving effectiveness is increased when leaders’ validity testing behaviors are consistent with three values—respecting the views of others, seeking to maximize validity of their own and others’ beliefs, and building internal commitment to decisions reached. The inclusion of these three values in the model means that our validity testing behaviors must be conceptualized and measured in ways that capture their interpersonal (respect and internal commitment) and epistemic (valid information) underpinnings. Without this conceptual underpinning, it is likely to be difficult to identify the validity testing behaviors that are associated with effectiveness. For example, the act of seeking agreement can be done in a coercive or a respectful manner, so it is important to define and measure this behavior in ways that distinguish between the two. How this and similar distinctions were accomplished is described in the subsequent section on the five validity testing behaviors.

The three values in Fig.  2 are based on the theories and practice of interpersonal and organizational effectiveness developed by Argyris and Schön ( 1974 , 1978 , 1996 ) and applied more recently in a range of educational leadership research contexts (Hannah et al., 2018 ; Patuawa et al., 2021 ; Sinnema et al., 2021a ). We have drawn on the work of Argyris and Schön because their theories explain the dilemma many leaders experience between the two components of problem solving effectiveness and indicate how that dilemma can be avoided or resolved.

Seeking to maximize the validity of information is important because leaders’ beliefs have powerful consequences for the lives and learning of teachers and students and can limit or support educational change efforts. Leaders who behave consistently with the validity of information value are truth seekers rather than truth claimers in that they are open-minded and thus more attentive to the information that disconfirms rather than confirms their beliefs. Rather than assuming the validity of their beliefs and trying to impose them on others, their stance is one of seeking to detect and correct errors in their own and others′ thinking (Robinson, 2017 ).

The value of respect is closely linked to the value of maximizing the validity of information. Leaders increase validity by listening carefully to the views of others, especially if those views differ from their own. Listening carefully requires the accordance of worth and respect, rather than private or public dismissal of views that diverge from or challenge one’s own. If leaders’ conversations are guided by the two values of valid information and respect, then the third value of fostering internal commitment is also likely to be present. Teachers become internally committed to courses of action when their concerns have been listened to and directly addressed as part of the problem-solving process.

The role of validity testing behaviors in problem solving

Figure  2 includes five behaviors designed to test the validity of the three types of belief involved in problem solving. They are: 1) disclosing beliefs; 2) providing grounds; 3) exploring difference; 4) examining logic; and 5) seeking agreement. These behaviors enable leaders to check the validity of their beliefs by engaging in open minded disclosure and discussion of their thinking. While these behaviors are most closely linked to the value of maximizing valid information, the values of respect and internal commitment are also involved in these behaviors. For example, it is respectful to honestly and clearly disclose one’s beliefs about a problem to the other person concerned (advocacy), and to do so in ways that make the grounds for the belief testable and open to revision. It is also respectful to combine advocacy of one’s own beliefs with inquiry into others’ reactions to those beliefs and with inquiry into their own beliefs. When leaders encounter doubts and disagreements, they build internal rather than external commitment by being open minded and genuinely interested in understanding the grounds for them (Spiegel, 2012 ). By listening to and responding directly to others’ concerns, they build internal commitment to the process and outcomes of the problem solving.

Advocacy and inquiry dimensions

Each of the five validity testing behaviors can take the form of a statement (advocacy) or a question (inquiry). A leader’s advocacy contributes to problem solving effectiveness when it communicates his or her beliefs and the grounds for them, in a manner that is consistent with the three values. Such disclosure enables others to understand and critically evaluate the leader’s thinking (Tompkins, 2013 ). Respectful inquiry is equally important, as it invites the other person into the conversation, builds the trust they need for frank disclosure of their views, and signals that diverse views are welcomed. Explicit inquiry for others’ views is particularly important when there is a power imbalance between the parties, and when silence suggests that some are reluctant to disclose their views. Across their careers, leaders tend to rely more heavily on advocating their own views than on genuinely inquiring into the views of others (Robinson & Le Fevre, 2011 ). It is the combination of advocacy and inquiry behaviors, that enables all parties to collaborate in formulating a more valid understanding of the nature of the problem and of how it may be solved.

The five validity testing behaviors

Disclosing beliefs is the first and most essential validity testing behavior because beliefs cannot be publicly tested, using the subsequent four behaviors, if they are not disclosed. This behavior includes leaders’ advocacy of their own beliefs and their inquiry into others’ beliefs, including reactions to their own beliefs (Peeters & Robinson, 2015 ; Robinson & Le Fevre, 2011 ).

Honest and respectful disclosure ensures that all the information that is believed to be relevant to the problem, including that which might trigger an emotional reaction, is shared and available for validity testing (Robinson & Le Fevre, 2011 ; Robinson et al., 2020 ; Tjosvold et al., 2005 ). Respectful disclosure has been linked with follower trust. The empirical work of Norman et al. ( 2010 ), for example, showed that leaders who disclose more, and are more transparent in their communication, instill higher levels of trust in those they work with.

Providing grounds , the second validity testing behavior, is concerned with leaders expressing their beliefs in a way that makes the reasoning that led to them testable (advocacy) and invites others to do the same (inquiry). When leaders clearly explain the grounds for their beliefs and invite the other party to critique their relevance or accuracy, the validity or otherwise of the belief becomes more apparent. Both advocacy and inquiry about the grounds for beliefs can lead to a strengthening, revision, or abandonment of the beliefs for either or both parties (Myran & Sutherland, 2016 ; Robinson & Le Fevre, 2011 ; Robinson et al., 2020 ).

Exploring difference is the third validity testing behavior. It is essential because two parties simply disclosing beliefs and the grounds for them is insufficient for arriving at a joint solution, particularly when such disclosure reveals that there are differences in beliefs about the accuracy and implications of the evidence or differences about the soundness of arguments. Exploring difference through advocacy is seen in such behaviors as identifying and signaling differing beliefs and evaluating contrary evidence that underpins those differing beliefs. An inquiry approach to exploring difference (Timperley & Parr, 2005 ) occurs when a leader inquires into the other party’s beliefs about difference, or their response to the leaders’ beliefs about difference.

Exploring differences in beliefs is key to increasing validity in problem solving efforts (Mumford et al., 2007 ; Robinson & Le Fevre, 2011 ; Tjosvold et al., 2005 ) because it can lead to more integrative solutions and enhance the commitment from both parties to work with each other in the future (Tjosvold et al., 2005 ). Leaders who are able to engage with diverse beliefs are more likely to detect and challenge any faulty reasoning and consequently improve solution development (Le Fevre & Robinson, 2015 ). In contrast, when leaders do not engage with different beliefs, either by not recognizing or by intentionally ignoring them, validity testing is more limited. Such disengagement may be the result of negative attributions about the other person, such as that they are resistant, stubborn, or lazy. Such attributions reduce opportunities for the rigorous public testing that is afforded by the exchange and critical examination of competing views.

Examining logic , the fourth validity testing behavior, highlights the importance of devising a solution that adequately addresses the nature of the problem at hand and its causes. To develop an effective solution both parties must be able to evaluate the logic that links problems to their assumed causes and solutions. This behavior is present when the leader suggests or critiques the relationship between possible causes of and solutions to the identified problem. In its inquiry form, the leader seeks such information from the other party. As Zaccaro et al. ( 2000 ) explain, good problem solvers have skills and expertise in selecting the information to attend to in their effort to “understand the parameters of problems and therefore the dimensions and characteristics of a likely solution” (p. 44–45). These characteristics may include solution timeframes, resource capacities, an emphasis on organizational versus personal goals, and navigation of the degree of risk allowed by the problem approach. Explicitly exploring beliefs is key to ensuring the logic linking problem causes and any proposed solution. Taking account of a potentially complex set of contributing factors when crafting logical solutions, and testing the validity of beliefs about them, is likely to support effective problem solving. This requires what Copland ( 2010 ) describes as a creative process with similarities to clinical reasoning in medicine, in which “the initial framing of the problem is fundamental to the development of a useful solution” (p. 587).

Seeking agreement , the fifth validity testing behavior, signals the importance of warranted agreement about problem beliefs. We use the term ‘warranted’ to make clear that the goal is not merely getting the other party to agree (either that something is a problem, that a particular cause is involved, or that particular actions should be carried out to solve it)—mere agreement is insufficient. Rather, the goal is for warranted agreement whereby both parties have explored and critiqued the beliefs (and their grounds) of the other party in ways that provide a strong basis for the agreement. Both parties must come to some form of agreement on beliefs because successful solution implementation occurs in a social context, in that it relies on the commitment of all parties to carry it out (Mumford et al., 2000 ; Robinson & Le Fevre, 2011 ; Tjosvold et al., 2005 ). Where full agreement does not occur, the parties must at least be clear about where agreement/disagreement lies and why.

Testing the validity of beliefs using these five behaviors, and underpinned by the values described earlier is, we argue, necessary if conversations are to lead to two types of improvement—progress on the task (i.e., solving the problem) and improving the relationship between those involved in the conversation (i.e., ensuring those relationship between the problem-solvers is intact and enhanced through the process). We draw attention here to those improvement purposes as distinct from those underpinning work in the educational leadership field that takes a neo-managerialist perspective. The rise of neo-managerialism is argued to redefine school management and leadership along managerial lines and hence contribute to schools that are inequitable, reductionist, and inauthentic (Thrupp & Willmott, 2003 ). School leaders, when impacted by neo-managerialism, need to be (and are seen as) “self-interested, opportunistic innovators and risk-takers who exploit information and situations to produce radical change.” In contrast, the model we propose rejects self-interest. Our model emphasizes on deep respect for the views of others and the relentless pursuit of genuine shared commitment to understanding and solving problems that impact on children and young people through collaborative engagement in joint problem solving. Rather than permitting leaders to exploit others, our model requires leaders to be adept at using both inquiry and advocacy together with listening to both progress the task (solving problems) and simultaneously enhance the relationship between those involved. We position this model of social problem solving effectiveness as a tool for addressing social justice concerns—it intentionally dismisses problem solving approaches that privilege organizational efficiency indicators and ignore the wellbeing of learners and issues of inequity, racism, bias, and social injustice within and beyond educational contexts.


The following section outlines the purpose of the study, the participants, and the mixed methods approach to data collection and analysis.

Research purpose

Our prior qualitative research (Robinson et al., 2020 ) involving in-depth case studies of three educational leaders revealed problematic patterns in leaders’ approach to problem-solving conversations: little disclosure of causal beliefs, little public testing of beliefs that might trigger negative emotions, and agreement on solutions that were misaligned with causal beliefs. The present investigation sought to understand if a quantitative methodological approach would reveal similar patterns and examine the relationship between belief types and leaders’ use of validity testing behaviors. Thus, our overarching research question was: to what extent do leaders test the validity of their beliefs in conversations with those directly involved in the analysis and resolution of the problem? Our argument is that while new experiences might motivate change in beliefs (Bonner et al., 2020 ), new insights gained through testing the validity of beliefs is also imperative to change. The sub-questions were:

What is the relative frequency in the types of beliefs leaders hold about problems involving others?

To what extent do leaders employ validity testing behaviors in conversations about those problems?

Are there differential patterns in leaders’ validity testing of the different belief types?


The participants were 43 students in a graduate course on educational leadership in New Zealand who identified an important on the job problem that they intended to discuss with the person directly involved.

The mixed methods approach

The study took a mixed methods approach using a partially mixed sequential equal status design; (QUAL → QUAN) (Leech & Onwuegbuzie, 2009 ). The five stages of sourcing and analyzing data and making interpretations are summarised in Fig.  3 below and outlined in more detail in the following sections (with reference in brackets to the numbered phases in the figure). We describe the study as partially mixed because, as Leech & Onwuegbuzie, 2009 explain, in partially mixed methods “both the quantitative and qualitative elements are conducted either concurrently or sequentially in their entirety before being mixed at the data interpretation stage” (p. 267).

figure 3

Overview of mixed methods approach

Stage 1: Qualitative data collection

Three data sources were used to reveal participants’ beliefs about the problem they were seeking to address. The first source was their response to nine open ended items in a questionnaire focused on a real problem the participant had attempted to address but that still required attention (1a). The items were about: the nature and history of the problem; its importance; their own and others’ contribution to it; the causes of the problem; and the approach to and effectiveness of prior attempts to resolve it.

The second source (1b) was the transcript of a real conversation (typically between 5 and 10 minutes duration) the leaders held with the other person involved in the problem, and the third was the leaders’ own annotations of their unspoken thoughts and feelings during the course of the conversation (1c). The transcription was placed in the right-hand column (RHC) of a split page with the annotations recorded at the appropriate place in the left-hand column (LHC). The LHC method was originally developed by Argyris and Schön ( 1974 ) as a way of examining discrepancies between people’s espoused and enacted interpersonal values. Referring to data about each leader’s behavior (as recorded in the transcript of the conversation) and their thoughts (as indicated in the LHC) was important since the model specifies validity testing behaviors that are motivated by the values of respect, valid information, and internal commitment. Since motives cannot be revealed by speech alone, we also needed access to the thoughts that drove their behavior, hence our use of the LHC data collection technique. This approach allowed us to respond to Leithwood and Stager’s ( 1989 ) criticism that much research on effective problem solving gives results that “reveal little or nothing about how actions were selected or created and treat the administrator’s mind as a ‘black box’” (p. 127).

Stage 2: Qualitative analysis

The three stages of qualitative analysis focused on identifying discrete beliefs in the three qualitative data sources, distilling those discrete beliefs into key beliefs, and identifying leaders’ use of validity testing behaviors.

Stage 2a: Analyzing types of beliefs about problems

For this stage, we developed and applied coding rules (see Table 1 ) for the identification of the three types of beliefs in the three sources described earlier—leaders’ questionnaire responses, conversation transcript (RHC), and unexpressed thoughts (LHC). We identified 903 discrete beliefs (utterances or thoughts) from the 43 transcripts, annotations, and questionnaires and recorded these on a spreadsheet (2a). While our model proposes that leaders’ inquiry will surface and test the beliefs of others, we quantify in this study only the leaders’ beliefs.

Stage 2b: Distilling discrete beliefs into key beliefs

Next, we distilled the 903 discrete beliefs into key beliefs (KBs) (2b). This was a complex process and involved multiple iterations across the research team to determine, check, and test the coding rules. The final set of rules for distilling key beliefs were:

Beliefs should be made more succinct in the key belief statement, and key words should be retained as much as possible

Judgment quality (i.e., negative or positive) of the belief needs to be retained in the key belief

Key beliefs should use overarching terms where possible

The meaning and the object of the belief need to stay constant in the key belief

When reducing overlap, the key idea of both beliefs need to be captured in the key beliefs

Distinctive beliefs need to be summarized on their own and not combined with other beliefs

The subject of the belief must be retained in the key belief—own belief versus restated belief of other

All belief statements must be accounted for in key beliefs

These rules were applied to the process of distilling multiple related beliefs into statements of key beliefs as illustrated by the example in the table below (Table 2 ).

Further examples of how the rules were applied are outlined in ' Appendix A '. The number of discrete beliefs for each leader ranged from 7 to 35, with an average of 21, and the number of key beliefs for each leader ranged between 4 and 14, with an average of eight key beliefs. Frequency counts were used to identify any patterns in the types of key beliefs which were held privately (not revealed in the conversation but signalled in the left hand column or questionnaire) or conveyed publicly (in conversation with the other party).

Stage 2c: Analyzing leaders’ use of validity testing behaviors

We then developed and applied coding rules for the five validity testing behaviors (VTB) outlined in our model (disclosing beliefs, providing grounds, exploring difference, examining logic, and seeking agreement). Separate rules were established for the inquiry and advocacy aspects of each VTB, generating ten coding rules in all (Table 3 ).

These rules, summarised in the table below, and outlined more fully in ' Appendix A ', encompassed inclusion and exclusion criteria for the advocacy and inquiry dimensions of each validity testing behavior. For example, the inclusion rule for the VTB of ‘Disclosing Beliefs’ required leaders to disclose their beliefs about the nature, and/or causes, and/or possible solutions to the problem, in ways that were consistent with the three values included in the model. The associated exclusion rule signalled that this criterion was not met if, for example, the leader asked a question in order to steer the other person toward their own views without having ever disclosed their own views, or if they distorted the urgency or seriousness of the problem related to what they had expressed privately. The exclusion rules also noted how thoughts expressed in the left hand column would exclude the verbal utterance from being treated as disclosure—for example if there were contradictions between the right hand (spoken) and left hand column (thoughts), or if the thoughts indicated that the disclosure had been distorted in order to minimise negative emotion.

The coding rules reflected the values of respect and internal commitment in addition to the valid information value that was foregrounded in the analysis. The emphasis on inquiry, for example (into others’ beliefs and/or responses to the beliefs already expressed by the leader), recognised that internal commitment would be impossible if the other party held contrary views that had not been disclosed and discussed. Similarly, the focus on leaders advocating their beliefs, grounds for those beliefs and views about the logic linking solutions to problem causes recognise that it is respectful to make those transparent to another party rather than impose a solution in the absence of such disclosure.

The coding rules were applied to all 43 transcripts and the qualitative analysis was carried out using NVivo 10. A random sample of 10% of the utterances coded to a VTB category was checked independently by two members of the research team following the initial analysis by a third member. Any discrepancies in the coding were resolved, and data were recoded if needed. Descriptive analyses then enabled us to compare the frequency of leaders’ use of the five validity testing behaviors.

Stage 3: Data transformation: From qualitative to quantitative data

We carried out transformation of our data set (Burke et al., 2004 ), from qualitative to quantitative, to allow us to carry out statistical analysis to answer our research questions. The databases that resulted from our data transformation, with text from the qualitative coding along with numeric codes, are detailed next. In database 1, key beliefs were all entered as cases with indications in adjacent columns as to the belief type category they related to, and the source/s of the belief (questionnaire, transcript or unspoken thoughts/feelings). A unique identifier was created for each key belief.

In database 2, each utterance identified as meeting the VTB coding rules were entered in column 1. The broader context of the utterance from the original transcript was then examined to establish the type of belief (description, explanation, or solution) the VTB was being applied to, with this recorded numerically alongside the VTB utterance itself. For example, the following utterance had been coded to indicate that it met the ‘providing grounds’ coding rule, and in this phase it was also coded to indicate that it was in relation to a ‘problem description’ belief type:

“I noticed on the feedback form that a number of students, if I’ve got the numbers right here, um, seven out of ten students in your class said that you don’t normally start the lesson with a ‘Do Now’ or a starter activity.” (case 21)

A third database listed all of the unique identifiers for each leader’s key beliefs (KB) in the first column. Subsequent columns were set up for each of the 10 validity testing codes (the five validity testing behaviors for both inquiry and advocacy). The NVivo coding for the VTBs was then examined, one piece of coding at a time, to identify which key belief the utterance was associated with. Each cell that intersected the appropriate key belief and VTB was increased by one as a VTB utterance was associated with a key belief. Our database included variables for both the frequency of each VTB (the number of instances the behavior was used) and a parallel version with just a dichotomous variable indicating the presence or absence or each VTB. The dichotomous variable was used for our subsequent analysis because multiple utterances indicating a certain validity testing behavior were not deemed to necessarily constitute better quality belief validity testing than one utterance.

Stage 4: Quantitative analysis

The first phase of quantitative analysis involved the calculation of frequency counts for the three belief types (4a). Next, frequencies were calculated for the five validity testing behaviors, and for those behaviors in relation to each belief type (4b).

The final and most complex stage of the quantitative analysis, stages 4c through 4f, involved looking for patterns across the two sets of data created through the prior analyses (belief type and validity testing behaviors) to investigate whether leaders might be more inclined to use certain validity testing behaviors in conjunction with a particular belief type.

Stage 4a: Analyzing for relationships between belief type and VTB

We investigated the relationship between belief type and VTB, first, for all key beliefs. Given initial findings about variability in the frequency of the VTBs, we chose not to use all five VTBs separately in our analysis, but rather the three categories of: 1) None (key beliefs that had no VTB applied to them); 2) VTB—Routine (the sum of VTBs 1 and 2; given those were much more prevalent than others in the case of both advocacy and inquiry); and 3) VTB—Robust (the sum of the VTBs 3, 4 and 5 given these were all much less prevalent than VTBs 1 and 2, again including both advocacy and/or inquiry). Cross tabs were prepared and a chi-square test of independence was performed on the data from all 331 key beliefs.

Stage 4b: Analyzing for relationships between belief type and VTB

Next, because more than half (54.7%, 181) of the 331 key beliefs were not tested by leaders using any one of the VTBs, we analyzed a sub-set of the database, selecting only those key beliefs where leaders had disclosed the belief (using advocacy and/or inquiry). The reason for this was to ensure that any relationships established statistically were not unduly influenced by the data collection procedure which limited the time for the conversation to 10 minutes, during which it would not be feasible to fully disclose and address all key beliefs held by the leader. For this subset we prepared cross tabs and carried out chi-square tests of independence for the 145 key beliefs that leaders had disclosed. We again investigated the relationship between key belief type and VTBs, this time using a VTB variable with two categories: 1) More routine only and 2) More routine and robust.

Stage 4c: Analyzing for relationships between belief type and advocacy/inquiry dimensions of validity testing

Next, we investigated the relationship between key belief type and the advocacy and inquiry dimensions of validity testing. This analysis was to provide insight into whether leaders might be more or less inclined to use certain VTBs for certain types of belief. Specifically, we compared the frequency of utterances about beliefs of all three types for the categories of 1) No advocacy or inquiry, 2) Advocacy only, 3) Inquiry only, and 4) Advocacy and inquiry (4e). Cross tabs were prepared, and a chi-square test of independence was performed on the data from all 331 key beliefs. Finally, we again worked with the subset of 145 key beliefs that had been disclosed, comparing the frequency of utterances coded to 1) Advocacy or inquiry only, or 2) Both advocacy and inquiry (4f).

Below, we highlight findings in relation to the research questions guiding our analysis about: the relative frequency in the types of beliefs leaders hold about problems involving others; the extent to which leaders employ validity testing behaviors in conversations about those problems; and differential patterns in leaders’ validity testing of the different belief types. We make our interpretations based on the statistical analysis and draw on insights from the qualitative analysis to illustrate those results.

Belief types

Leaders’ key beliefs about the problem were evenly distributed between the three belief types, suggesting that when they think about a problem, leaders think, though not necessarily in a systematic way, about the nature of, explanation for, and solutions to their problem (see Table 4 ). These numbers include beliefs that were communicated and also those recorded privately in the questionnaire or in writing on the conversation transcripts.

Patterns in validity testing

The majority of the 331 key beliefs (54.7%, 181) were not tested by leaders using any one of the VTBs, not even the behavior of disclosing the belief. Our analysis of the VTBs that leaders did use (see Table 5 ) shows the wide variation in frequency of use with some, arguably the more robust ones, hardly used at all.

The first pattern was more frequent disclosure of key beliefs than provision of the grounds for them. The lower levels of providing grounds is concerning because it has implications for the likelihood of those in the conversation subsequently reaching agreement and being able to develop solutions logically aligned to the problem (VTB4). The logical solution if it is the time that guided reading takes that is preventing a teacher doing ‘shared book reading’ (as Leader 20 believed to be the case) is quite different to the solution that is logical if in fact the reason is something different, for example uncertainty about how to go about ‘shared book reading’, lack of shared book resources, or a misunderstanding that school policy requires greater time on shared reading.

The second pattern was a tendency for leaders to advocate much more than they inquire— there was more than double the proportion of advocacy than inquiry overall and for some behaviors the difference between advocacy and inquiry was up to seven times greater. This suggests that leaders were more comfortable disclosing their own beliefs, providing the grounds for their own beliefs and expressing their own assumptions about agreement, and less comfortable in inquiring in ways that created space and invited the other person in the conversation to reveal their beliefs.

A third pattern revealed in this analysis was the difference in the ratio of inquiry to advocacy between VTB1 (disclosing beliefs)—a ratio of close to 1:2 and VTB2 (providing grounds)—a ratio of close to 1:7. Leaders are more likely to seek others’ reactions when they disclose their beliefs than when they give their grounds for those beliefs. This might suggest that leaders assume the validity of their own beliefs (and therefore do not see the need to inquire into grounds) or that they do not have the skills to share the grounds associated with the beliefs they hold.

Fourthly, there was an absence of attention to three of the VTBs outlined in our model—in only very few of the 329 validity testing utterances the 43 leaders used were they exploring difference (11 instances), examining logic (4 instances) or seeking agreement (22 instances). In Case 22, for example, the leader claimed that learning intentions should be displayed and understood by children and expressed concern that the teacher was not displaying them, and that her students thus did not understand the purpose of the activities they were doing. While the teacher signaled her disagreement with both of those claims—“I do learning intentions, it’s all in my modelling books I can show them to you if you want” and “I think the children know why they are learning what they are learning”—the fact that there were differences in their beliefs was not explicitly signaled, and the differences were not explored. The conversation went on, with each continuing to assume the accuracy of their own beliefs. They were unable to reach agreement on a solution to the problem because they had not established and explored the lack of agreement about the nature of the problem itself. We presume from these findings, and from our prior qualitative work in this field, that those VTBs are much more difficult, and therefore much less likely to be used than the behaviors of disclosing beliefs and providing grounds.

The relationship between belief type and validity testing behaviors

The relationship between belief type and category of validity testing behavior was significant ( Χ 2 (4) = 61.96,  p  < 0.001). It was notable that problem explanation beliefs were far less likely than problem description or problem solution beliefs to be subject to any validity testing (the validity of more than 80% of PEBs was not tested) and, when they were tested, it was typically with the more routine rather than robust VTBs (see Table 6 ).

Problem explanation beliefs were also most likely to not be tested at all; more than 80% of the problem explanation beliefs were not the focus of any validity testing. Further, problem description beliefs were less likely than problem solution beliefs to be the target of both routine and robust validity testing behaviors—12% of PDBs and 18% of PSBs were tested using both routine and robust VTBs.

Two important assumptions underpin the study reported here. The first is that problems of equity must be solved, not only in the macrosystem and exosystem, but also as they occur in the day to day practices of leaders and teachers in micro and mesosystems. The second is that conversations are the key practice in which problem solving occurs in the micro and mesosystems, and that is why we focused on conversation quality. We focused on validity testing as an indicator of quality by closely analyzing transcripts of conversations between 43 individual leaders and a teacher they were discussing problems with.

Our findings suggest a considerable gap between our normative model of effective problem solving conversations and the practices of our sample of leaders. While beliefs about what problems are, and proposed solutions to them are shared relatively often, rarely is attention given to beliefs about the causes of problems. Further, while leaders do seem to be able to disclose and provide grounds for their beliefs about problems, they do so less often for beliefs about problem cause than other belief types. In addition, the critical validity testing behaviors of exploring difference, examining logic, and seeking agreement are very rare. Learning how to test the validity of beliefs is, therefore, a relevant focus for educational leaders’ goals (Bendikson et al., 2020 ; Meyer et al., 2019 ; Sinnema & Robinson, 2012 ) as well as a means for achieving other goals.

The patterns we found are problematic from the point of view of problem solving in schools generally but are particularly problematic from the point of view of macrosystem problems relating to equity. In New Zealand, for example, the underachievement and attendance issues of Pasifika students is a macrosystem problem that has been the target of many attempts to address through a range of policies and initiatives. Those efforts include a Pasifika Education Plan (Ministry of Education, 2013 ) and a cultural competencies framework for teachers of Pasifika learners—‘Tapasa’ (Ministry of Education, 2018 ) At the level of the mesosystem, many schools have strategic plans and school-wide programmes for interactions seeking to address those issues.

Resolving such equity issues demands that macro and exosystem initiatives are also reflected in the interactions of educators—hence our investigation of leaders’ problem-solving conversations and attention to whether leaders have the skills required to solve problems in conversations that contribute to aspirations in the exo and macrosystem, include of excellence and equity in new and demanding national curricula (Sinnema et al., 2020a ; Sinnema, Stoll, 2020a ). An example of an exosystem framework—the competencies framework for teachers of Pacific students in New Zealand—is useful here. It requires that teachers “establish and maintain collaborative and respectful relationships and professional behaviors that enhance learning and wellbeing for Pasifika learners” (Ministry of Education, 2018 , p. 12). The success of this national framework is influenced by and also influences the success that leaders in school settings have at solving problems in the conversations they have about related micro and mesosystem problems.

To illustrate this point, we draw here on the example of one case from our sample that showed how problem-solving conversation capability is related to the success or otherwise of system level aspirations of this type. In the case of Leader 36, under-developed skill in problem solving talk likely stymied the success of the equity-focused system initiatives. Leader 36 had been alerted by the parents of a Pasifika student that their daughter “feels that she is being unfairly treated, picked on and being made to feel very uncomfortable in the teacher’s class.” In the conversation with Leader 36, the teacher described having established a good relationship with the student, but also having had a range of issues with her including that she was too talkative, that led the teacher to treat her in ways the teacher acknowledged could have made her feel picked on and consequently reluctant to come to school.

The teacher also told the leader that there were issues with uniform irregularities (which the teacher picked on) and general non conformity—“No, she doesn’t [conform]. She often comes with improper footwear, incorrect jacket, comes late to school, she puts make up on, there are quite a few things that aren’t going on correctly….”. The teacher suggested that the student was “drawing the wrong type of attention from me as a teacher, which has had a negative effect on her.” The teacher described to the leader a recent incident:

[The student] had come to class with her hair looking quite shabby so I quietly asked [the student] “Did you wake up late this morning?” and then she but I can’t remember, I made a comment like “it looks like you didn’t take too much interest in yourself.” To me, I thought there was nothing wrong with the comment as it did not happen publicly; it happened in class and I had walked up to her. Following that, [her] Mum sends another email about girls and image and [says] that I am picking on her again. I’m quite baffled as to what is happening here. (case 36)

This troubling example represented a critical discretionary moment. The pattern of belief validity testing identified through our analysis of this case (see Table 7 ), however, mirrors some of the patterns evident in the wider sample.

The leader, like the student’s parents, believed that the teacher had been offensive in her communication with the student and also that the relationship between the teacher and student would be negatively impacted as a result. These two problem description beliefs were disclosed by the leader during her conversation with the teacher. However, while her disclosure of her belief about the problem description involved both advocating the belief, and inquiring into the other’s perception of it, the provision of grounds for the belief involved advocacy only. She reported the basis of the concern (the email from the student’s parents about their daughter feeling unfairly treated, picked on, and uncomfortable in class) but did not explicitly inquire into the grounds. This may be explained in this case through the teacher offering her own account of the situation that matched the parent’s report. Leader 36 also disclosed in her conversation with the teacher, her problem solution key belief that they should hold a restorative meeting between the teacher, the student, and herself.

What Leader 36 did not disclose was her belief about the explanation for the problem—that the teacher did not adequately understand the student personally, or their culture. The problem explanation belief (KB4) that she did inquire into was one the teacher raised—suggesting that the student has “compliance issues” that led the teacher to respond negatively to the student’s communication style—and that the teacher agreed with. The leader did not use any of the more robust but important validity testing behaviors for any of the key beliefs they held, either about problem description, explanation or solutions. And most importantly, this conversation highlights how policies and initiatives developed by those in the macrosystem, aimed at addressing equity issues, can be thwarted through well-intentioned but ultimately unsuccessful efforts of educators as they operate in the micro and mesosystem in what we referred to earlier as a discretionary problem solving space. The teacher’s treatment of the Pasifika student in our example was in stark contrast to the respectful and strong relationships demanded by the exosystem policy, the framework for teachers of Pasifika students. Furthermore, while the leader recognized the problem, issues of culture were avoided—they were not skilled enough in disclosing and testing their beliefs in the course of the conversation to contribute to broader equity concerns. The skill gap resonates with the findings of much prior work in this field (Le Fevre et al., 2015 ; Robinson et al., 2020 ; Sinnema et al., 2013 ; Smith, 1997 ; Spillane et al., 2009 ; Timperley & Robinson, 1998 ; Zaccaro et al., 2000 ), and highlights the importance of leaders, and those working with them in leadership development efforts, to recognize the interactions between the eco-systems outlined in the nested model of problem solving detailed in Fig.  1 .

The reluctance of Leader 36 to disclose and discuss her belief that the teacher misunderstands the student and her culture is important given the wider research evidence about the nature of the beliefs teachers may hold about indigenous and minority learners. The expectations teachers hold for these groups are typically lower and more negative than for white students (Gay, 2005 ; Meissel et al., 2017 ). In evidence from the New Zealand context, Turner et al. ( 2015 ), for example, found expectations to differ according to ethnicity with higher expectations for Asian and European students than for Māori and Pasifika students, even when controlling for achievement, due to troubling teacher beliefs about students’ home backgrounds, motivations, and aspirations. These are just the kind of beliefs that leaders must be able to confront in conversations with their teachers.

We use this example to illustrate both the interrelatedness of problems across the ecosystem, and the urgency of leadership development intervention in this area. Our normative model of effective problem solving conversations (Fig.  2 ), we suggest, provides a useful framework for the design of educational leadership intervention in this area. It shows how validity testing behaviors should embody both advocacy and inquiry and be used to explore not only perceptions of problem descriptions and solutions, but also problem causes. In this way, we hope to offer insights into how the dilemma between trust and accountability (Ehren et al., 2020 ) might be solved through increased interpersonal effectiveness. The combination of inquiry with advocacy also marks this approach out from neo-liberal approaches that emphasize leaders staying in control and predominantly advocating authoritarian perspectives of educational leadership. The interpersonal effectiveness theory that we draw on (Argyris & Schön, 1974 ) positions such unilateral control as ineffective, arguing for a mutual learning alternative. The work of problem solving is, we argue, joint work, requiring shared commitment and control.

Our findings also call for more research explicitly designed to investigate linkages between the systems. Case studies are needed, of macro and exosystem inequity problems backward mapped to initiatives and interactions that occur in schools related to those problems and initiatives. Such research could capture the complex ways in which power plays out “in relation to structural inequalities (of class, disability, ethnicity, gender, nationality, race, sexuality, and so forth)” and in relation to “more shifting and fluid inequalities that play out at the symbolic and cultural levels (for example, in ways that construct who “has” potential)” (Burke & Whitty, 2018 , p. 274).

Leadership development in problem solving should be approached in ways that surface and test the validity of leaders’ beliefs, so that they similarly learn to surface and test others’ beliefs in their leadership work. That is important not only from a workforce development point of view, but also from a social justice point of view since leaders’ capabilities in this area are inextricably linked to the success of educational systems in tackling urgent equity concerns.

Allison, D., & Allison, P. (1993). Both ends of a telescope: Experience and expertise in principal problem solving. Educational Administration Quarterly, 29 (3), 302–322.

Article   Google Scholar  

Argyris, C., Schön, D. (1974). Theory in practice: Increasing professional effectiveness . Jossey-Bass.

Argyris, C., & Schön, D. (1978). Organizational learning: A theory of action perspective Addison-Wesley.

Argyris, C., & Schön, D. (1996). Organizational learning II: Theory, method and practice . Addison-Wesley.

Google Scholar  

Ball, D. L. (2018). Just dreams and imperatives: the power of teaching in the struggle for public education . New York, NYC: Annual Meeting of the American Educational Research Association.

Bedell-Avers, E., Hunter, S., & Mumford, M. (2008). Conditions of problem-solving and the performance of charismatic, ideological, and pragmatic leaders: A comparative experimental study. The Leadership Quarterly, 19 , 89–106.

Bendikson, L., Broadwith, M., Zhu, T., & Meyer, F. (2020). Goal pursuit practices in high schools: hitting the target?. Journal of Educational Administration , 56 (6), 713–728.

Bonner, S. M., Diehl, K., & Trachtman, R. (2020). Teacher belief and agency development in bringing change to scale. Journal of Educational Change, 21 (2), 363–384.

Bronfenbrenner, U. (1992). Ecological systems theory. In R. Vasta, Six theories of child development: Revised formulations and current issues. Jessica Kingsley Publishers

Bronfenbrenner, U. (1977). Toward an experimental ecology of human development. American Psychologist, 32 (7), 513–531.

Burke Johnson, R., & Onwuegbuzie, A. (2004). Mixed methods research; a research paradigm whose time has come. Educational Researcher, 33 (7), 14–26.

Burke, P. J., & Whitty, G. (2018). Equity issues in teaching and teacher education. Peabody Journal of Education, 93 (3), 272–284.

Copland, F. (2010). Causes of tension in post-observation feedback in pre-service teacher training: An alternative view. Teaching and Teacher Education, 26 (3), 466–472.

Ehren, M., Paterson, A., & Baxter, J. (2020). Accountability and Trust: Two sides of the same coin? Journal of Educational Change, 21 (1), 183–213.

Fishbein, M., & Ajzen, I. (1975). Belief An Introduction to Theory and Research. Attitude, Intention and Behavior . Addison-Wesley.

Gay, G. (2005). Politics of multicultural teacher education. Journal of Teacher Education, 56 (3), 221–228.

Goldring, E., Cravens, X., Murphy, J., Porter, A., Elliott, S., & Carson, B. (2009). The evaluation of principals: What and how do states and urban disrticts assess leadership? The Elementary School Journal, 110 (1), 19–36.

Hannah, D., Sinnema, C., & Robinson. V. (2018). Theory of action accounts of problem-solving: How a Japanese school communicates student incidents to parents. Management in Education, 33 (2), 62–69. .

Heifetz, R., Grashow, A., & Linsky, M. (2009). The practice of adaptive leadership: Tools and tactics for changing your organization and the world . Harvard Business Press.

Le Fevre, D., & Robinson, V. M. J. (2015). The interpersonal challenges of instructional leadership: Principals’ effectiveness in conversations about performance issues. Educational Administration Quarterly, 51 (1), 58–95.

Le Fevre, D., Robinson, V. M. J., & Sinnema, C. (2015). Genuine inquiry: Widely espoused yet rarely enacted. Educational Management Administration & Leadership, 43 (6), 883–899.

Leech, N. L., & Onwuegbuzie, A. J. (2009). A typology of mixed methods research designs. Quality & Quantity, 43 (2), 265–275.

Leithwood, K., & Steinbach, R. (1995). Expert problem solving: Evidence from school and district leaders . State University of New York Press.

Leithwood, K., & Stager, M. (1989). Expertise in Principals’ Problem Solving. Educational Administration Quarterly, 25 (2), 126–161.

Leithwood, K., & Steinbach, R. (1992). Improving the problem solving expertise of school administrators. Education and Urban Society, 24 (3), 317–345.

Marcy, R., & Mumford, M. (2010). Leader cognition: Improving leader performance through causal analysis. The Leadership Quarterly, 21 (1), 1–19.

Mavrogordato, M., & White, R. (2020). Leveraging policy implementation for social justice: How school leaders shape educational opportunity when implementing policy for English learners. Educational Administration Quarterly, 56 (1), 3–45.

Meissel, K., Meyer, F., Yao, E. S., & Rubie-Davies, C. (2017). Subjectivity of Teacher Judgments: Exploring student characteristics that influence teacher judgments of student ability. Teaching and Teacher Education, 65 , 48–60.

Meyer, F., Sinnema, C., & Patuawa, J. (2019). Novice principals setting goals for school improvement in New Zealand. School Leadership & Management , 39 (2), 198−221.

Ministry of Education. (2013). Pasifika education plan 2013–2017 Retrieved 9 July from

Ministry of Education. (2018). Tapasā cultural competencies framework for teachers of Pacific learners . Ministry of Education.

Mumford, M., & Connelly, M. (1991). Leaders as creators: Leaders performance and problem solving in ill-defined domains. Leadership Quarterly, 2 (4), 289–315.

Mumford, M., Friedrich, T., Caughron, J., & Byrne, C. (2007). Leader cognition in real-world settings: How do leaders think about crises? The Leadership Quarterly, 18 , 515–543.

Mumford, M., Zaccaro, S., Harding, F., Jacobs, T., & Fleishman, E. (2000). Leadership skills for a changing world: Solving complex social problems. Leadership Quarterly, 11 (1), 11–35.

Myran, S., & Sutherland, I. (2016). Problem posing in leadership education: using case study to foster more effective problem solving. Journal of Cases in Educational Leadership, 19 (4), 57–71.

Newell, A., & Simon. (1972). Human problem solving . Prentice-Hall.

Norman, S., Avolio, B., & Luthans, B. (2010). The impact of positivity and transparency on trust in leaders and their perceived effectiveness. The Leadership Quarterly, 21 , 350–364.

Patuawa, J., Robinson, V., Sinnema, C., & Zhu, T. (2021). Addressing inequity and underachievement: Middle leaders’ effectiveness in problem solving. Leading and Managing , 27 (1), 51–78.

Peeters, A., & Robinson, V. M. J. (2015). A teacher educator learns how to learn from mistakes: Single and double-loop learning for facilitators of in-service teacher education. Studying Teacher Education, 11 (3), 213–227.

Robinson, V. M. J., Meyer, F., Le Fevre, D., & Sinnema, C. (2020). The Quality of Leaders’ Problem-Solving Conversations: truth-seeking or truth-claiming? Leadership and Policy in Schools , 1–22.

Robinson, V. M. J. (1993). Problem-based methodology: Research for the improvement of practice . Pergamon Press.

Robinson, V. M. J. (1995). Organisational learning as organisational problem-solving. Leading & Managing, 1 (1), 63–78.

Robinson, V. M. J. (2001). Organizational learning, organizational problem solving and models of mind. In K. Leithwood & P. Hallinger (Eds.), Second international handbook of educational leadership and administration. Kluwer Academic.

Robinson, V. M. J. (2010). From instructional leadership to leadership capabilities: Empirical findings and methodological challenges. Leadership and Policy in Schools, 9 (1), 1–26.

Robinson, V. M. J. (2017). Reduce change to increase improvement . Corwin Press.

Robinson, V. M. J., & Le Fevre, D. (2011). Principals’ capability in challenging conversations: The case of parental complaints. Journal of Educational Administration, 49 (3), 227–255.

Sinnema, C., Robinson, V. (2012). Goal setting in principal evaluation: Goal quality and predictors of achievement. Leadership and Policy in schools . 11 (2), 135–167,

Sinnema, C., Le Fevre, D., Robinson, V. M. J., & Pope, D. (2013). When others’ performance just isn’t good enough: Educational leaders’ framing of concerns in private and public. Leadership and Policy in Schools, 12 (4), 301–336.

Sinnema, C., Ludlow, L. H., & Robinson, V. M. J. (2016a). Educational leadership effectiveness: A rasch analysis. Journal of Educational Administration , 54 (3), 305–339.

Sinnema, C., Meyer, F., & Aitken, G. (2016b). Capturing the complex, situated, and sctive nature of teaching through inquiry-oriented standards for teaching. Journal of Teacher Education , 68 (1), 9–27.

Sinnema, C., Daly, A. J., Liou, Y.-h Sinnema, C., Daly, A. J., Liou, Y.-H., & Rodway, J. (2020a). Exploring the communities of learning policy in New Zealand using social network analysis: A case study of leadership, expertise, and networks. International Journal of Educational Research , 99 , 101492.

Sinnema, C., & Stoll, L. (2020b). Learning for and realising curriculum aspirations through schools as learning organisations. European Journal of Education, 55 , 9–23.

Sinnema, C., Nieveen, N., & Priestley, M. (2020c). Successful futures, successful curriculum: What can Wales learn from international curriculum reforms? The Curriculum Journal .

Sinnema, C., Hannah, D., Finnerty, A., & Daly, A. J. (2021a). A theory of action account of within and across school collaboration: The role of relational trust in collaboration actions and impacts. Journal of Educational Change .

Sinnema, C., Hannah, D., Finnerty, A. et al. (2021b). A theory of action account of an across-school collaboration policy in practice. Journal of Educational Change .

Sinnema, C., Liou, Y.-H., Daly, A., Cann, R., & Rodway, J. (2021c). When seekers reap rewards and providers pay a price: The role of relationships and discussion in improving practice in a community of learning. Teaching and Teacher Education, 107 , 103474.

Smith, G. (1997). Managerial problem solving: A problem-centered approach. In C. E. Zsambok & G. Klein (Eds.), Naturalistic Decision Making (pp. 371–380). Lawrence Erlbaum Associates.

Spiegel, J. (2012). Open-mindedness and intellectual humility. School Field, 10 (1), 27–38.

Spillane, J., Weitz White, K., & Stephan, J. (2009). School principal expertise: Putting expert aspiring principal differences in problem solving to the test. Leadership and Policy in Schools, 8 , 128–151.

Teddlie, C., & Tashakkori, A. (2006). A general typology of research designs featuring mixed methods. Research in the Schools, 13 , 12–28.

Thrupp, M., & Willmott, R. (2003). Education management in managerialist times: Beyond the textual apologists . Open University Press.

Timperley, H., & Parr, J. M. (2005). Theory competition and the process of change. Journal of Educational Change, 6 (3), 227–251.

Timperley, H. S., & Robinson, V. M. J. (1998). Collegiality in schools: Its nature and implications for problem solving. Educational Administration Quarterly, 34 (1), 608–629.

Tjosvold, D., Sun, H., & Wan, P. (2005). Effects of openness, problem solving, and blaming on learning: An experiment in China. The Journal of Social Psychology, 145 (6), 629–644.

Tompkins, T. (2013). Groupthink and the Ladder of Inference : Increasing Effective Decision Making. The Journal of Human Resource and Adult Learning , 8 (2), 84–90.

Turner, H., Rubie-Davies, C. M., & Webber, M. (2015). Teacher expectations, ethnicity and the achievement gap. New Zealand Journal of Educational Studies, 50 (1), 55–69.

Zaccaro, S., Mumford, M., Connelly, M., Marks, M., & Gilbert, J. (2000). Assessment of leader problem-solving capabilities. Leadership Quarterly, 11 (1), 37–64.

Zand, D. (1972). Trust and managerial problem solving. Administrative Science Quarterly, 17 , 229–239.

Download references

Author information

Authors and affiliations.

The Faculty of Education and Social Work, The University of Auckland, Auckland, New Zealand

Claire Sinnema, Frauke Meyer, Deidre Le Fevre, Hamish Chalmers & Viviane Robinson

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Claire Sinnema .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

See Table 8 .

See Table 9 .

See Table 10 .

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit .

Reprints and Permissions

About this article

Sinnema, C., Meyer, F., Le Fevre, D. et al. Educational leaders’ problem-solving for educational improvement: Belief validity testing in conversations. J Educ Change 24 , 133–181 (2023).

Download citation

Accepted : 29 August 2021

Published : 01 October 2021

Issue Date : June 2023


Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Educational Change
  • Educational improvement
  • Problem solving
  • Problem-solving conversations
  • Educational leadership
  • Validity testing
  • Find a journal
  • Publish with us

Eberly Center

Teaching excellence & educational innovation.

This site provides practical strategies to address teaching problems across the disciplines. These strategies are firmly grounded in educational research and learning principles.

How does it work?

This site supplements our 1-on-1 teaching consultations. CONTACT US to talk with an Eberly colleague in person!

learning principles

  • Students' prior knowledge can help or hinder learning. MORE
  • How students organize knowledge influences how they learn and apply what they know. MORE
  • Students' motivation determines, directs, and sustains what they do to learn. MORE
  • To develop mastery, students must acquire component skills, practice integrating them, and know when to apply what they have learned. MORE

creative commons image

  • Trying to Conceive
  • Signs & Symptoms
  • Pregnancy Tests
  • Fertility Testing
  • Fertility Treatment
  • Weeks & Trimesters
  • Staying Healthy
  • Preparing for Baby
  • Complications & Concerns
  • Pregnancy Loss
  • Breastfeeding
  • School-Aged Kids
  • Raising Kids
  • Personal Stories
  • Everyday Wellness
  • Safety & First Aid
  • Immunizations
  • Food & Nutrition
  • Active Play
  • Pregnancy Products
  • Nursery & Sleep Products
  • Nursing & Feeding Products
  • Clothing & Accessories
  • Toys & Gifts
  • Ovulation Calculator
  • Pregnancy Due Date Calculator
  • How to Talk About Postpartum Depression
  • Editorial Process
  • Meet Our Review Board

How to Teach Kids Problem-Solving Skills

KidStock / Blend Images / Getty Images

  • Steps to Follow
  • Allow Consequences

Whether your child can't find their math homework or has forgotten their lunch, good problem-solving skills are the key to helping them manage their life. 

A 2010 study published in Behaviour Research and Therapy found that kids who lack problem-solving skills may be at a higher risk of depression and suicidality.   Additionally, the researchers found that teaching a child problem-solving skills can improve mental health . 

You can begin teaching basic problem-solving skills during preschool and help your child sharpen their skills into high school and beyond.

Why Problem-Solving Skills Matter

Kids face a variety of problems every day, ranging from academic difficulties to problems on the sports field. Yet few of them have a formula for solving those problems.

Kids who lack problem-solving skills may avoid taking action when faced with a problem.

Rather than put their energy into solving the problem, they may invest their time in avoiding the issue.   That's why many kids fall behind in school or struggle to maintain friendships .

Other kids who lack problem-solving skills spring into action without recognizing their choices. A child may hit a peer who cuts in front of them in line because they are not sure what else to do.  

Or, they may walk out of class when they are being teased because they can't think of any other ways to make it stop. Those impulsive choices may create even bigger problems in the long run.

The 5 Steps of Problem-Solving

Kids who feel overwhelmed or hopeless often won't attempt to address a problem. But when you give them a clear formula for solving problems, they'll feel more confident in their ability to try. Here are the steps to problem-solving:  

  • Identify the problem . Just stating the problem out loud can make a big difference for kids who are feeling stuck. Help your child state the problem, such as, "You don't have anyone to play with at recess," or "You aren't sure if you should take the advanced math class." 
  • Develop at least five possible solutions . Brainstorm possible ways to solve the problem. Emphasize that all the solutions don't necessarily need to be good ideas (at least not at this point). Help your child develop solutions if they are struggling to come up with ideas. Even a silly answer or far-fetched idea is a possible solution. The key is to help them see that with a little creativity, they can find many different potential solutions.
  • Identify the pros and cons of each solution . Help your child identify potential positive and negative consequences for each potential solution they identified. 
  • Pick a solution. Once your child has evaluated the possible positive and negative outcomes, encourage them to pick a solution.
  • Test it out . Tell them to try a solution and see what happens. If it doesn't work out, they can always try another solution from the list that they developed in step two. 

Practice Solving Problems

When problems arise, don’t rush to solve your child’s problems for them. Instead, help them walk through the problem-solving steps. Offer guidance when they need assistance, but encourage them to solve problems on their own. If they are unable to come up with a solution, step in and help them think of some. But don't automatically tell them what to do. 

When you encounter behavioral issues, use a problem-solving approach. Sit down together and say, "You've been having difficulty getting your homework done lately. Let's problem-solve this together." You might still need to offer a consequence for misbehavior, but make it clear that you're invested in looking for a solution so they can do better next time. 

Use a problem-solving approach to help your child become more independent.

If they forgot to pack their soccer cleats for practice, ask, "What can we do to make sure this doesn't happen again?" Let them try to develop some solutions on their own.

Kids often develop creative solutions. So they might say, "I'll write a note and stick it on my door so I'll remember to pack them before I leave," or "I'll pack my bag the night before and I'll keep a checklist to remind me what needs to go in my bag." 

Provide plenty of praise when your child practices their problem-solving skills.  

Allow for Natural Consequences

Natural consequences  may also teach problem-solving skills. So when it's appropriate, allow your child to face the natural consequences of their action. Just make sure it's safe to do so. 

For example, let your teenager spend all of their money during the first 10 minutes you're at an amusement park if that's what they want. Then, let them go for the rest of the day without any spending money.

This can lead to a discussion about problem-solving to help them make a better choice next time. Consider these natural consequences as a teachable moment to help work together on problem-solving.

Becker-Weidman EG, Jacobs RH, Reinecke MA, Silva SG, March JS. Social problem-solving among adolescents treated for depression . Behav Res Ther . 2010;48(1):11-18. doi:10.1016/j.brat.2009.08.006

Pakarinen E, Kiuru N, Lerkkanen M-K, Poikkeus A-M, Ahonen T, Nurmi J-E. Instructional support predicts childrens task avoidance in kindergarten .  Early Child Res Q . 2011;26(3):376-386. doi:10.1016/j.ecresq.2010.11.003

Schell A, Albers L, von Kries R, Hillenbrand C, Hennemann T. Preventing behavioral disorders via supporting social and emotional competence at preschool age .  Dtsch Arztebl Int . 2015;112(39):647–654. doi:10.3238/arztebl.2015.0647

Cheng SC, She HC, Huang LY. The impact of problem-solving instruction on middle school students’ physical science learning: Interplays of knowledge, reasoning, and problem solving . EJMSTE . 2018;14(3):731-743.

Vlachou A, Stavroussi P. Promoting social inclusion: A structured intervention for enhancing interpersonal problem‐solving skills in children with mild intellectual disabilities . Support Learn . 2016;31(1):27-45. doi:10.1111/1467-9604.12112

Öğülmüş S, Kargı E. The interpersonal cognitive problem solving approach for preschoolers .  Turkish J Educ . 2015;4(17347):19-28. doi:10.19128/turje.181093

American Academy of Pediatrics. What's the best way to discipline my child? .

Kashani-Vahid L, Afrooz G, Shokoohi-Yekta M, Kharrazi K, Ghobari B. Can a creative interpersonal problem solving program improve creative thinking in gifted elementary students? .  Think Skills Creat . 2017;24:175-185. doi:10.1016/j.tsc.2017.02.011

Shokoohi-Yekta M, Malayeri SA. Effects of advanced parenting training on children's behavioral problems and family problem solving .  Procedia Soc Behav Sci . 2015;205:676-680. doi:10.1016/j.sbspro.2015.09.106

By Amy Morin, LCSW Amy Morin, LCSW, is the Editor-in-Chief of Verywell Mind. She's also a psychotherapist, an international bestselling author of books on mental strength and host of The Verywell Mind Podcast. She delivered one of the most popular TEDx talks of all time.

By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

  • Yale University
  • About Yale Insights
  • Privacy Policy
  • Accessibility

What Will It Take to Fix Public Education?

The last two presidents have introduced major education reform efforts. Are we making progress toward a better and more equitable education system? Yale Insights talked with former secretary of education John King, now president and CEO of the Education Trust, about the challenges that remain, and the impact of the Trump Administration.

  • John B. King President and CEO, The Education Trust

This interview was conducted at the Yale Higher Education Leadership Summit , hosted by Yale SOM’s Chief Executive Leadership Institute on January 30, 2018.

On January 8, 2002, President George W. Bush traveled to Hamilton High School in Hamilton, Ohio, to sign the No Child Left Behind Act , a bipartisan bill (Senator Edward Kennedy was a co-sponsor) requiring, among other things, that states test students for proficiency in reading and math and track their progress. Schools that failed to reach their goals would be overhauled or even shut down.

“No longer is it acceptable to hide poor performance,” Bush said. “[W]hen we find poor performance, a school will be given time and incentives and resources to correct their problems.… If, however, schools don’t perform, if, however, given the new resources, focused resources, they are unable to solve the problem of not educating their children, there must be real consequences.”

Did No Child Left Behind make a difference? In 2015, Monty Neil of the anti-standardized testing group FairTest argued that while students made progress after the law was passed, it was slower than in the period before the law . And the No Child Left Behind was the focus of criticism for increasing federal control over schools and an emphasis on standardized testing. Its successor, the Every Student Succeeds Act of 2015, shifted power back to the states.

President Barack Obama had his own signature education law: the grant program Race to the Top, originally part of the 2009 stimulus package, which offered funds to states that undertook various reforms, including expanding charter schools, adopting the Common Core curriculum standards, and reforming teacher evaluation.

One study showed that Race to the Top had a dramatic effect on state practices : even states that didn’t receive the grants adopted reforms. But another said that the actual impact on outcomes were limited —and that there were overly high expectations given the scope of the reforms. “Heightened pressure on districts to produce impossible gains from an overly narrow policy agenda has made implementation difficult and often counterproductive,” wrote Elaine Weiss.

Are we making progress toward a better and more equitable education system? And how will the Trump Administration’s policies alter the trajectory? Yale Insights talked with John King, the secretary of education in the latter years of the Obama administration, who is now president and CEO of the nonprofit Education Trust .

Q: The last two presidents have introduced major education reform efforts. Do you think we’re getting closer to a consensus on the systematic changes that are needed in education?

Well, I’d say we’ve made progress in some important areas over the last couple of decades. We have highest graduation from high school we’ve ever had as a country. Over the last eight years, we had a million African-American and Latino students go on to college. S0 there are signs of progress.

That said, I’m very worried about the current moment. I think there’s a lack of a clear vision from the current administration, the Trump administration, about what direction education should head. And to the extent that they have an articulate vision, I think it’s actually counter to the interests of low-income students and students of color: a dismantling of federal protection of civil rights, a backing-away from the federal commitment to provide aid for students to go to higher education, and undermining of the public commitment to public schools.

That’s a departure. Over the last couple of decades, we’ve had a bipartisan consensus, whether it was in the Bush administration or the Obama administration, that the job of the Department of Education was to advance education equity and to protect student civil rights. The current administration is walking away from both of those things.

I don’t see that as a partisan issue. That’s about this administration and their priorities. Among the first things they did was to reduce civil rights protections for transgender students, to withdraw civil rights protections for victims of sexual assault on higher education campuses. They proposed a budget that cuts funding for students to go to higher education, eliminates all federal support for teacher professional development, and eliminates federal funding for after-school and summer programs.

Q: Some aspects of education reform have focused on improving performance in traditional public schools and others prioritize options like charter schools and private school vouchers. Do you think both of those are needed?

I distinguish between different types of school choice. The vast majority of kids are in traditional, district public schools. We’ve got to make sure that we’re doing everything we can to strengthen those schools and ensure their success.

Then I think there is an important role that high-quality public charters can play if there’s rigorous oversight. And if you think about, say, Massachusetts or New York, there’s a high bar to get a charter, there’s rigorous supervision of the academics and operations of the schools and a willingness to close schools that are low-performing. So for me, those high-quality public charters can contribute as a laboratory for innovation and work in partnership with the broader traditional system.

There’s something very different going on in a place like Michigan, where you’ve got a proliferation of low-quality, for-profit charters run by for-profit companies. Their poorly regulated schools are allowed to continue operating that are doing a terrible job, that are taking advantage of students and families. That’s not what we need. And my view is that states that have those kinds of weak charter laws need to change them and move toward something like Massachusetts where there’s a high bar and meaningful accountability for charters.

And then there’s a whole other category of vouchers, which is using public money for students to go to private school, and to my mind, that is a mistake. We ought to have public dollars going to public schools with public accountability.

Q: When you have a state like Michigan in which you’ve got a lot of very poor charter schools, does that hurt a particular type of student more than others?

It has a disproportionate negative effect on low-income students and students of color. Many of those schools are concentrated in high-needs communities and, unfortunately, it’s really presenting a false choice to parents, a mirage, if you will, because they’re told, “Oh, come to this school, it will be different” or, “it will be better,” and actually it’s not. Ed Trust has an office in Michigan, where we have spent a long time trying to make the case to elected officials that they need to strengthen their charter law and charter accountability.

Unfortunately, there’s a very high level of spending by the for-profit charter industry and their supporters on political campaigns. And so far there’s not been a lot of traction to try to strengthen the charter oversight in Michigan. We see that problem in other states around the country, but at the same time we know there are models that work. We know that in Massachusetts, where there’s a high standard for charters, their Boston charters are some of the highest performing charters in the country, getting great outcomes for high-need students. So it’s possible to do chartering well, but it requires thoughtful leadership from governors and legislators.

Q: What’s your view on how students should be evaluated?

Well, I think we have to have a holistic view. The goal ought to be to prepare students for success in college, in careers, and as citizens. So we want students to have the core academic skills, like English and math, but they also need the knowledge that you gain from science and social studies. They need the experiences that they have in art and music and physical education and health. They need that well-rounded education to be prepared to succeed at what’s next after high school. They also need to be prepared to be critical readers, critical thinkers, to debate ideas with their fellow citizens, to advocate for their ideas in a thoughtful, constructive way—all the tools that you need to be a good citizen.

In order to evaluate all of that, you need multiple measures; you can’t just look at test scores. Obviously you want students to gain reading and math skills, but you also need to look at what courses they’re taking. Are they taking a wide range of courses that will prepare them for success? Do they have access to things like AP courses or International Baccalaureate courses that will prepare them for college-level work? Do they acquire socio-emotional skills? Are they able to navigate when they have a conflict with a peer? Are they able to work collaboratively with peers to solve problems?

So you want to look at grades; you want to look at teachers’ perceptions of students. You want to look at the work that they’re doing in class: is it rigorous, is it really preparing them for life after high school? And one of the challenges in education is, to have those kinds of multiple measures, you need very thoughtful leadership at every level—at state level, district level, and at the school level.

Q: How should we be evaluating teachers?

I started out as a high school social studies teacher, and I thought a lot about this question of what’s the right evaluation method. I think the key is this: you want, as a teacher, to get feedback on how you’re doing and what’s happening in your classroom. Too often teaching can feel very isolated, where it’s just you and the students. It’s important to have systems in place where a mentor teacher, a master teacher, a principal, a department chair is in the classroom observing and giving feedback to teachers and having a continuous conversation about how to improve teaching. That should be a part of an evaluation system.

But so too should be how students are doing, whether or not students are making progress. I know folks worry that that could be reduced to just looking at test scores. I think that would be a mistake, but we ought to ask, if you’re a seventh-grade math teacher, if students are making progress in seventh-grade math.

Now, as we look at that, we have to take into consideration the skills the students brought with them to the classroom, the challenges they face outside of the classroom. But I think what you see in schools that are succeeding is that they have a thoughtful, multiple-measures approach to giving teachers feedback on how they’re doing and see it as a tool for continuous improvement to ensure that everybody is constantly learning.

Q: Do you think the core issue in improving schools is funding? Or are there separate systemic issues that need to be solved?

It varies a lot state to state, but the Education Trust has done extensive analysis of school spending, and what we see is that on average, districts serving low-income students are spending significantly less than more affluent districts across the country, about $1,200 less per student. And in some states, that can be $3,000 less, $5,000 less, $10,000 less per student for the highest-needs kids. We also see a gap around funding for communities that serve large numbers of students of color. Actually, the average gap nationally is larger for districts serving large numbers of students of color—it’s about $2,000 less than those districts that serve fewer students of color.

So we do have a gap in terms of resources coming in, but it’s not just about money; it’s also how you use the money. And we know that, sadly, in many places, the dollars aren’t getting to the highest needs, even within a district. And then once they get to the school level, the question is, are they being spent on teachers and teacher professional development, and things that are going to serve students directly, or are they being spent on central office needs that actually aren’t serving students? So we’ve got to make sure they have more resources for the highest-needs kids, but we’ve also got to make sure that the resources are well-used.

Q: Does it make it significantly harder that so much of the decisions are made on the local level or the state level when you’re trying to create a change across the country?

It’s certainly a challenge. You want to try to balance local leadership with common goals. And you want, as a country, to be able to say, look, you may choose different books to read in class, you may choose different experiments to do in science, but we need all students to have the fundamental skills that they’ll need for success in college and careers and we ought to all be able to agree that all schools should be focused on those skills. Even that can be politically challenging.

We also know that from a funding standpoint, having funding decided mostly on the local level can actually create greater inequality, particularly when you’re relying on local property taxes. You’ll have a very wealthy community that’s spending dramatically more than a neighboring community that has many more low-income families. One of the ways to get around that is to have the state or the federal government account for a larger share of funding so that you can have an equalizing role. That was the original goal of Title I funding at the federal level—to try to get resources to the highest-needs kids.

The other challenge we see is around race and income diversity or isolation. And sadly, in many states, Connecticut included, you have very sharp divisions along race and class lines between districts and so kids may go to school and never see someone different from them. That is a significant problem. We know there are places that are trying to solve that. Hartford, Connecticut, for example, has, because of a court decision, a very extensive effort to get kids from Hartford to go out to suburban schools and suburban kids to come to Hartford schools. And they’ve designed programs that will attract folks across community lines, programs that focus on Montessori or art or early college programs. We can do better, but we need leadership around that.

Q: Are you seeing concrete results from programs like Hartford?

What we know is that low-income students who have the opportunity to go to schools that serve a mixed-income population do better academically. And we also know that all students in schools that are socioeconomically and racially diverse gain additional skills outside the purely academic skills around how to work with peers, cross-racial understanding, empathy.

So, yes, we are seeing those results. The sad thing is, it’s not fast enough; it’s not happening at enough places. We in the Obama administration had proposed a $120 million grant program to school diversity initiatives around the country. We couldn’t get Congress to fund it. We had a small planning grant program that we created at the Education Department that was one of the first things the Trump administration undid when they came into office. So we’re going backwards at the federal level, but there’s a lot of energy around school diversity initiatives at the community level. And that’s where we’re seeing progress around the country.

Q: Do you think the education system should aim to send as many people to college as possible? Should we think of it as being necessary for everyone or should we find ways to prepare students for a wider range of careers?

What’s clear is that everybody going into the 21st-century economy needs some level of post-secondary training. That may be a four-year degree. It could also be a two-year community college degree, or it could be some meaningful career credential that actually leads to a job that provides a family-sustaining wage. But there are very, very few jobs that are going to provide that family-sustaining wage that don’t require some level of post-secondary training. My view is, we have a public responsibility to make sure folks have access to those post-secondary training opportunities. That’s why the Pell Grant program is so important, because it provides funding for low-income students to be able to pursue higher education.

We also need to do a better job in the connection between high school and post-secondary opportunities. A lot of times students leave high school unclear on what they’re going to do and where they should go. We can do a much better job having students have college experiences while in high school and then prepare them to transition into meaningful post-secondary career training.

Q: What’s the one policy change you would made to help students of color and students in poverty, if you had to choose one thing?

There’s no one single silver bullet for sure, but one of the highest return investments we know we can make as a country is in early learning. We know, for example, that high quality pre-K can have an eight-to-one, nine-to-one return on investment. President Obama proposed something called Preschool for All, which would have gotten us toward universal access to quality pre-K for low- and middle-income four-year olds. That’s something we ought to do because if we can give kids a good foundation, that puts them in a better place to succeed in K-12 and to go on to college.

But I have a long list of policy changes I would want to make. I think, fundamentally, we haven’t made that commitment as a country, at the federal level, state level, or local level, to ensuring equitable opportunity for low-income students and students of color. And if we made that commitment, then there’s a series of policy changes that would flow from that.

Interviewed and edited by Ben Mattison.

Visit to learn more about the Education Trust. Follow John B. King Jr. on Twitter: @JohnBKing .

  • Public Policy
  • Our Mission

How Do We Educate Global Problem Solvers?

how to solve problem in education

What are the biggest problems in the world?

When I pose that question to students they mention war, poverty, climate change, and more. About a year ago, a group of Connecticut middle school students produced such a list. Then I asked them to raise their hands if they could imagine us solving these problems. Of the 45 students, only a handful could.

In my 25 years as a humane educator -- someone who teaches about pressing global challenges and offers students the tools to become "solutionaries" for a more just and sustainable world -- I had never encountered so much hopelessness in a middle school classroom, not even in the most underserved schools in the most disenfranchised communities.

Fortunately, I was able to turn their hopelessness around by leading them through a visualization. I asked them to close their eyes and imagine themselves as very old and approaching the end of their lives. I described a very different world, one in which we'd solved our biggest problems. Then I asked them to imagine a child approaching them and asking what they had done to help bring about this better world, and I invited them to answer that child. With their eyes still closed, I again asked if they could imagine us solving our problems, and this time only a few did not raise their hands.

I felt relieved that it didn't take much to shift these students' sense of hope and efficacy, but the experience reinforced my belief that our education system needs to shift to ensure that we prepare our students to meet their future.

Given the enormous challenges we face, and the dire consequences of inaction, we educators owe it to our students to make certain they graduate knowledgeable, prepared, and empowered to participate in the necessary tasks of transforming destructive and unjust systems in production, agriculture, energy, transportation, and more into healthy systems through whatever careers they ultimately pursue.

What's ironic about the Connecticut children's initial lack of hope is that, despite the potential calamities we face, we're actually living in less violent, less discriminatory, and less cruel times than ever before in recorded human history. Add to that our capacity to communicate and collaborate with people across the globe and a vast, growing body of knowledge available on handheld computers, and there is every reason for our children to feel hopeful and enthusiastic. We've never been better positioned to solve our problems, and our students need to know that each one has an important role to play in bringing about a more just, sustainable, and humane world before it is too late. So it's up to us to provide an education that enables them to be the critical thinkers, creative innovators, and collegial collaborators.

How can we do this? Here are two ideas.

1. True Price

True Price is a humane education activity in which students analyze an everyday item, such as an article of clothing, an electronic device, a food, etc., and ask the following questions:

  • What are its effects, both positive and negative, on you as an individual consumer, on other people, on animals, and on the environment?
  • What systems support, promote, and perpetuate it?
  • What alternatives do more good and less harm, and if no alternative exists, what systems would need to change to make alternatives ubiquitous?

True Price is flexible. It can fit into the core subjects of language arts, science, math, and social studies, as well as foreign language, art, economics, and more. It can be done in a single class, as a homework assignment, as a project, or through an elective. In the process of answering the questions above, students become better critical and creative thinkers, more conscientious choice makers, and more motivated change makers. The activity can also lead to projects that promote collaboration and problem solving, and it meets a number of Common Core Standards .

A few years ago, I spoke at a high school's National Honor Society induction. In my presentation, we did the True Price activity with a conventional cotton t-shirt made in China. While we couldn't know much about that specific t-shirt, there's a lot we do know about conventional cotton production: it uses large amounts of pesticides; child slaves work in cotton fields in Asia; sweatshop conditions are the norm in many factories; dyes, often dripped into the eyes of conscious rabbits in animal tests, are largely toxic; and a significant percentage of these toxins wind up in our waterways.

There are also positive effects. The production and distribution of a t-shirt employs many people, and its wearer is able to buy it at a reasonable price, but when I asked if there are alternatives that do more good and less harm, students realized that we could, and should, do better. After the talk, one of the inductees exclaimed, "We should have been learning this since kindergarten!" She understood that without knowledge about unhealthy and unjust systems, we cannot change them.

2. Solutionary Teams

Debate teams are commonplace in high schools, and students learn excellent critical thinking, speaking, and persuasion skills through them. In debate, students are typically assigned one side or the other of a fabricated either/or question. Imagine, instead, solutionary teams where students work together to come up with innovative and cost-effective solutions to actual problems, whether in their own school, their community, their nation, or the world.

We are excited to be hosting a Solutionary Congress where these teams will be able to present their solutions. The Congress will be attended by social entrepreneurs, investors, legislators, and more, and you can download a free starter kit if you would like to start a team in your school.

Youth yearn for meaningful education. I receive grateful letters after humane education presentations and courses. As one eighth grader wrote, "Spending that week with you was the most inspiring five days of my life so far. You made me realize how much just one person can do to help the world."

While this letter sounds positive, I find it depressing. A week-long course with a humane educator shouldn't be the most inspiring five days of any teenager's life. Her whole education should be inspiring. All of her teachers should be humane educators who infuse their curricula with relevance and meaning so that no child ever doubts his or her capacity and responsibility to contribute to a better world.

These ideas and tools are just samples. We need a greater conversation on how to help our students become more focused on solutions. How have you brought similar ideas into your classroom?

Rick Hess Straight Up

Education policy maven Rick Hess of the American Enterprise Institute think tank offers straight talk on matters of policy, politics, research, and reform. Read more from this blog.

What It Takes to Actually Improve Math Education

how to solve problem in education

  • Share article

Barry Garelick, a veteran math teacher in California and respected observer of math instruction, recently reached out after seeing my Q&A with ST Math’s Andrew Coulson on using visualization to teach math. Garelick is a cogent thinker, clear writer, and author of books including Out on Good Behavior: Teaching math while looking over your shoulder and Math Education in the U.S.: Still Crazy After All These Years . Given all that, I thought his reflections well worth sharing—see what you think.

Rick, I thought your recent interview with Andrew Coulson of ST Math was a fascinating look at how educational products—particularly those that address math—are promoted. In the interview, Coulson states that the “innate ability of visualizing math was not being leveraged to solve a serious education problem: a lack of deep conceptual understanding of mathematics.”

As someone who has been teaching math for the past 10 years and written several books on key issues in math education, this struck a chord for me. I’ve seen the three-decade-long obsession with “deeper understanding” cause more problems than it solves—including overlooking other factors contributing to problems in math education, such as the disdain for memorization, the difference between understanding and procedure, and the issue with trying to teach problem solving solely by teaching generic skills. Undoing these would be a long-overdue step in the right direction to reverse the trends we are seeing in math education.

For starters, many math reformers seem to disdain memorization in favor of cultivating “deeper understanding.” The prevailing belief in current math-reform circles is that drilling kills the soul and makes students hate math and that memorizing the facts obscures understanding. Memorization of multiplication facts and the drills to get there, for example, are thought to obscure the meaning of what multiplication is. Instead of memorizing, students are encouraged to reason their way to “fluently derive” answers. For example, students who do not know that 8×7 is 56 may find the answer by reasoning that if 8×6 is 48, then 8×7 is eight more than 48, or 56. (Ironically, the same people who believe no student should be made to memorize have no problem with students using calculators for multiplication facts.)

Unfortunately, this approach ignores the fact that there are some things in math that need to be memorized and drilled, such as addition and multiplication facts. Repetitive practice lies at the heart of mastery of almost every discipline, and mathematics is no exception. No sensible person would suggest eliminating drills from sports, music, or dance. De-emphasize skill and memorization and you take away the child’s primary scaffold for understanding.

Teaching procedures and standard algorithms is similarly shunned as “rote memorization” that gets in the way of “deeper understanding” in math. But educators who believe this fail to see that using procedures to solve problems actually requires reasoning with such methods—which in itself is a form of understanding. Indeed, iterative practice is key to attaining procedural fluency and conceptual understanding. Understanding, critical thinking, and problem solving come when students can draw on a strong foundation of relevant domain content, which is built through the “rote memorization” of procedure. Whether understanding or procedure is taught first ought to be driven by subject matter and student need—not educational ideology. In short, of course we should teach for understanding. But don’t sacrifice the proficiency gained by learning procedures in the name of understanding by obsessing over it and holding students up when they are ready to move forward.

Finally, although it’s been shown that solving math problems cannot be taught by teaching generic problem-solving skills, math reformers believe that such skills can be taught independent of specific problems. Traditional word problems such as “Two trains traveling toward each other at different speeds. When will they meet?” are held to be inauthentic and not relevant to students’ lives.

Instead, the reformers advocate an approach that presents students “challenging open-ended problems” (sometimes called “rich problems”) for which little or no prior instruction is given and which do not develop any identifiable or transferable skills. For example, “How many boxes would be needed to pack and ship 1 million books collected in a school-based book drive?” In this problem, the size of the books is unknown and varied and the size of the boxes is not stated. While some teachers consider the open-ended nature of the problem to be deep, rich, and unique, students will generally lack the skills required to solve such a problem, such as knowledge of proper experimental approaches, systematic and random errors, organizational skills, and validation and verification. Students are given generic problem-solving techniques (e.g., look for a simpler but similar problem), in the belief that they will develop a “problem-solving habit of mind.” But in the case of the above problem, such techniques simply will not work, leaving students frustrated, confused, and feeling as if they are not good at math.

Instead of having students struggle with little or no prior knowledge of how to approach a problem, students need to be given explicit instruction on solving various types of problems, via worked examples and initial practice problems. After that, they should be given problems that vary in difficulty, forcing students to stretch beyond the examples. Students build up a repertoire of problem-solving techniques as they progress from novice to expert. In my experience, students who are left to struggle with minimal guidance tend to ask, “Why do I need to know this?,” whereas students given proper instruction do not—nor do they care whether the problems are “relevant” to their everyday lives.

At the end of the day, finding a cure for a system that refuses to recognize its ills has proved futile. Parents confronting school administrators are patronized and placated or told that they don’t like the way math is taught because it’s not how they were taught.

Change will not come about by battling school administrations. There must be a recognition that the above approaches to teaching math are not working, as is currently happening with reading, thanks to the efforts of people like Emily Hanford, Natalie Wexler, and others, who have shown that teaching reading via phonics is effective , whereas memorizing words by sight or guessing the word by the context or a picture is not. Until then, only people with the means and access to tutors, learning centers, and private schools will be able to ensure that their students learn the math they need. The rest will be left to the “equitable solutions” of the last three decades that have proved disastrous.

Barry Garelick is a 7 th and 8 th grade math teacher and author of several books on math education, including his most recent, Out on Good Behavior: Teaching math while looking over your shoulder . Garelick, who worked in environmental protection for the federal government before entering the classroom, has also written articles on math education for publications including The Atlantic, Education Next, Nonpartisan Education Review, and Education News.

The opinions expressed in Rick Hess Straight Up are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Edweek top school jobs.

Students creating programs while using laptop. Boy and girl learning coding in school. They are at desk in classroom.

Sign Up & Sign In

module image 9

The global education challenge: Scaling up to tackle the learning crisis

  • Download the policy brief

Subscribe to Global Connection

Alice albright alice albright chief executive officer - global partnership for education @alicealbright.

July 25, 2019

The following is one of eight briefs commissioned for the 16th annual Brookings Blum Roundtable, “2020 and beyond: Maintaining the bipartisan narrative on US global development.”

Addressing today’s massive global education crisis requires some disruption and the development of a new 21st-century aid delivery model built on a strong operational public-private partnership and results-based financing model that rewards political leadership and progress on overcoming priority obstacles to equitable access and learning in least developed countries (LDCs) and lower-middle-income countries (LMICs). Success will also require a more efficient and unified global education architecture. More money alone will not fix the problem. Addressing this global challenge requires new champions at the highest level and new approaches.

Key data points

In an era when youth are the fastest-growing segment of the population in many parts of the world, new data from the UNESCO Institute for Statistics (UIS) reveals that an estimated 263 million children and young people are out of school, overwhelmingly in LDCs and LMICs. 1 On current trends, the International Commission on Financing Education Opportunity reported in 2016 that, a far larger number—825 million young people—will not have the basic literacy, numeracy, and digital skills to compete for the jobs of 2030. 2 Absent a significant political and financial investment in their education, beginning with basic education, there is a serious risk that this youth “bulge” will drive instability and constrain economic growth.

Despite progress in gender parity, it will take about 100 years to reach true gender equality at secondary school level in LDCs and LMICs. Lack of education and related employment opportunities in these countries presents national, regional, and global security risks.

Related Books

Liesbet Steer

February 20, 2014

Justin van Fleet

September 15, 2011

Nima Tshering

December 16, 2014

Among global education’s most urgent challenges is a severe lack of trained teachers, particularly female teachers. An additional 9 million trained teachers are needed in sub-Saharan Africa by 2030.

Refugees and internally displaced people, now numbering over 70 million, constitute a global crisis. Two-thirds of the people in this group are women and children; host countries, many fragile themselves, struggle to provide access to education to such people.

Highlighted below are actions and reforms that could lead the way toward solving the crisis:

  • Leadership to jump-start transformation. The next U.S. administration should convene a high-level White House conference of sovereign donors, developing country leaders, key multilateral organizations, private sector and major philanthropists/foundations, and civil society to jump-start and energize a new, 10-year global response to this challenge. A key goal of this decadelong effort should be to transform education systems in the world’s poorest countries, particularly for girls and women, within a generation. That implies advancing much faster than the 100-plus years required if current programs and commitments remain as is.
  • A whole-of-government leadership response. Such transformation of currently weak education systems in scores of countries over a generation will require sustained top-level political leadership, accompanied by substantial new donor and developing country investments. To ensure sustained attention for this initiative over multiple years, the U.S. administration will need to designate senior officials in the State Department, USAID, the National Security Council, the Office of Management and Budget, and elsewhere to form a whole-of-government leadership response that can energize other governments and actors.
  • Teacher training and deployment at scale. A key component of a new global highest-level effort, based on securing progress against the Sustainable Development Goals and the Addis 2030 Framework, should be the training and deployment of 9 million new qualified teachers, particularly female teachers, in sub-Saharan Africa where they are most needed. Over 90 percent of the Global Partnership for Education’s education sector implementation grants have included investments in teacher development and training and 76 percent in the provision of learning materials.
  • Foster positive disruption by engaging community level non-state actors who are providing education services in marginal areas where national systems do not reach the population. Related to this, increased financial and technical support to national governments are required to strengthen their non-state actor regulatory frameworks. Such frameworks must ensure that any non-state actors operate without discrimination and prioritize access for the most marginalized. The ideological divide on this issue—featuring a strong resistance by defenders of public education to tap into the capacities and networks of non-state actors—must be resolved if we are to achieve a rapid breakthrough.
  • Confirm the appropriate roles for technology in equitably advancing access and quality of education, including in the initial and ongoing training of teachers and administrators, delivery of distance education to marginalized communities and assessment of learning, strengthening of basic systems, and increased efficiency of systems. This is not primarily about how various gadgets can help advance education goals.
  • Commodity component. Availability of appropriate learning materials for every child sitting in a classroom—right level, right language, and right subject matter. Lack of books and other learning materials is a persistent problem throughout education systems—from early grades through to teaching colleges. Teachers need books and other materials to do their jobs. Consider how the USAID-hosted Global Book Alliance, working to address costs and supply chain issues, distribution challenges, and more can be strengthened and supported to produce the model(s) that can overcome these challenges.

Annual high-level stock take at the G-7. The next U.S. administration can work with G-7 partners to secure agreement on an annual stocktaking of progress against this new global education agenda at the upcoming G-7 summits. This also will help ensure sustained focus and pressure to deliver especially on equity and inclusion. Global Partnership for Education’s participation at the G-7 Gender Equality Advisory Council is helping ensure that momentum is maintained to mobilize the necessary political leadership and expertise at country level to rapidly step up progress in gender equality, in and through education. 3 Also consider a role for the G-20, given participation by some developing country partners.

Related Content

Jenny Perlman Robinson, Molly Curtiss Wyss

July 3, 2018

Michelle Kaffenberger

May 17, 2019

Ramya Vivekanandan

February 14, 2019

  • “263 Million Children and Youth Are Out of School.” UNESCO UIS. July 15, 2016.
  • “The Learning Generation: Investing in education for a changing world.” The International Commission on Financing Global Education Opportunity. 2016.
  • “Influencing the most powerful nations to invest in the power of girls.” Global Partnership for Education. March 12, 2019.

Global Education

Global Economy and Development

Online only

9:00 am - 10:00 am EST

Nariman Moustafa

October 20, 2023

Seven Solutions for Education Inequality

Giving compass' take:.

  •  Jermeelah Martin shares seven solutions that can reduce and help to eliminate education inequality in the United States.
  • What role are you ready to take on to address education inequality? What does education inequality look like in your community?
  • Read about comprehensive strategies for promoting educational equity .

What is Giving Compass?

We connect donors to learning resources and ways to support community-led solutions. Learn more about us .

Systemic issues in funding drives education inequality and has detrimental effects primarily on low-income Black and Brown students. These students receive lower quality of education which is reflected through less qualified teachers,not enough books, technologies and special support like counselors and disability services. The lack of access to fair, quality education creates the broader income and wealth gaps in the U.S. Black and brown students face more hurdles to going to college and will be three times more likely to experience poverty as a American with only a highschool degree than an American with a college degree. Income inequality worsens the opportunity for building wealth for Black and Brown families because home and asset ownership will be more difficult to attain.

  • Concretely, the first solution would be to reduce class distinctions among students by doing away with the property tax as a primary funding source. This is a significant driver for education inequality because low-income students, by default, will receive less. Instead, the state government should create more significant initiatives and budgets for equitable funding.
  • Stop the expansion of charter and private schools as it is not affordable for all students and creates segregation.
  • Deprioritize test based funding because it discriminates against disadvantaged students.
  • Support teachers financially, as in offering higher salaries and benefits for teachers to improve retention.
  • Invest more resources for support in low-income, underfunded schools such as, increased special education specialists and counselors.
  • Dismantle the school to prison pipeline for students by adopting more restorative justice efforts and fewer funds for cops in schools. This will create more funds for education justice initiatives and work to end the over policing of minority students.
  • More broadly, supporting efforts to dismantle the influence of capitalism in our social sector and supporting an economy that taxes the wealthy at a higher rate will allow for adequate support and funding of public sectors like public education and support for low-income families.

Read the full article about solutions for education inequality  by Jermeelah Martin at United for a Fair Economy.

More Articles

Our education funding system is broken. we can fix it., learning policy institute, nov 21, 2022, the funding gap between charter schools and traditional public schools, may 22, 2019.

Become a newsletter subscriber to stay up-to-date on the latest Giving Compass news.

Giving Compass Network

Partnerships & services.

We are a nonprofit too. Donate to Giving Compass to help us guide donors toward practices that advance equity.

Trending Issues

Copyright © 2023, Giving Compass Network

A 501(c)(3) organization. EIN: 85-1311683

Don’t Just Tell Students to Solve Problems. Teach Them How.

The positive impact of an innovative uc san diego problem-solving educational curriculum continues to grow.

Published Date

Share this:, article content.

Problem solving is a critical skill for technical education and technical careers of all types. But what are best practices for teaching problem solving to high school and college students? 

The University of California San Diego Jacobs School of Engineering is on the forefront of efforts to improve how problem solving is taught. This UC San Diego approach puts hands-on problem-identification and problem-solving techniques front and center. Over 1,500 students across the San Diego region have already benefited over the last three years from this program. In the 2023-2024 academic year, approximately 1,000 upper-level high school students will be taking the problem solving course in four different school districts in the San Diego region. Based on the positive results with college students, as well as high school juniors and seniors in the San Diego region, the project is getting attention from educators across the state of California, and around the nation and the world.


In Summer 2023, th e 27 community college students who took the unique problem-solving course developed at the UC San Diego Jacobs School of Engineering thrived, according to Alex Phan PhD, the Executive Director of Student Success at the UC San Diego Jacobs School of Engineering. Phan oversees the project. 

Over the course of three weeks, these students from Southwestern College and San Diego City College poured their enthusiasm into problem solving through hands-on team engineering challenges. The students brimmed with positive energy as they worked together. 

What was noticeably absent from this laboratory classroom: frustration.

“In school, we often tell students to brainstorm, but they don’t often know where to start. This curriculum gives students direct strategies for brainstorming, for identifying problems, for solving problems,” sai d Jennifer Ogo, a teacher from Kearny High School who taught the problem-solving course in summer 2023 at UC San Diego. Ogo was part of group of educators who took the course themselves last summer.

The curriculum has been created, refined and administered over the last three years through a collaboration between the UC San Diego Jacobs School of Engineering and the UC San Diego Division of Extended Studies. The project kicked off in 2020 with a generous gift from a local philanthropist.

Not getting stuck

One of the overarching goals of this project is to teach both problem-identification and problem-solving skills that help students avoid getting stuck during the learning process. Stuck feelings lead to frustration – and when it’s a Science, Technology, Engineering and Math (STEM) project, that frustration can lead students to feel they don’t belong in a STEM major or a STEM career. Instead, the UC San Diego curriculum is designed to give students the tools that lead to reactions like “this class is hard, but I know I can do this!” –  as Ogo, a celebrated high school biomedical sciences and technology teacher, put it. 

Three years into the curriculum development effort, the light-hearted energy of the students combined with their intense focus points to success. On the last day of the class, Mourad Mjahed PhD, Director of the MESA Program at Southwestern College’s School of Mathematics, Science and Engineering came to UC San Diego to see the final project presentations made by his 22 MESA students.

“Industry is looking for students who have learned from their failures and who have worked outside of their comfort zones,” said Mjahed. The UC San Diego problem-solving curriculum, Mjahed noted, is an opportunity for students to build the skills and the confidence to learn from their failures and to work outside their comfort zone. “And from there, they see pathways to real careers,” he said. 

What does it mean to explicitly teach problem solving? 

This approach to teaching problem solving includes a significant focus on learning to identify the problem that actually needs to be solved, in order to avoid solving the wrong problem. The curriculum is organized so that each day is a complete experience. It begins with the teacher introducing the problem-identification or problem-solving strategy of the day. The teacher then presents case studies of that particular strategy in action. Next, the students get introduced to the day’s challenge project. Working in teams, the students compete to win the challenge while integrating the day’s technique. Finally, the class reconvenes to reflect. They discuss what worked and didn't work with their designs as well as how they could have used the day’s problem-identification or problem-solving technique more effectively. 

The challenges are designed to be engaging – and over three years, they have been refined to be even more engaging. But the student engagement is about much more than being entertained. Many of the students recognize early on that the problem-identification and problem-solving skills they are learning can be applied not just in the classroom, but in other classes and in life in general. 

Gabriel from Southwestern College is one of the students who saw benefits outside the classroom almost immediately. In addition to taking the UC San Diego problem-solving course, Gabriel was concurrently enrolled in an online computer science programming class. He said he immediately started applying the UC San Diego problem-identification and troubleshooting strategies to his coding assignments. 

Gabriel noted that he was given a coding-specific troubleshooting strategy in the computer science course, but the more general problem-identification strategies from the UC San Diego class had been extremely helpful. It’s critical to “find the right problem so you can get the right solution. The strategies here,” he said, “they work everywhere.”

Phan echoed this sentiment. “We believe this curriculum can prepare students for the technical workforce. It can prepare students to be impactful for any career path.”

The goal is to be able to offer the course in community colleges for course credit that transfers to the UC, and to possibly offer a version of the course to incoming students at UC San Diego. 

As the team continues to work towards integrating the curriculum in both standardized high school courses such as physics, and incorporating the content as a part of the general education curriculum at UC San Diego, the project is expected to impact thousands more students across San Diego annually. 

Portrait of the Problem-Solving Curriculum

On a sunny Wednesday in July 2023, an experiential-learning classroom was full of San Diego community college students. They were about half-way through the three-week problem-solving course at UC San Diego, held in the campus’ EnVision Arts and Engineering Maker Studio. On this day, the students were challenged to build a contraption that would propel at least six ping pong balls along a kite string spanning the laboratory. The only propulsive force they could rely on was the air shooting out of a party balloon.

A team of three students from Southwestern College – Valeria, Melissa and Alondra – took an early lead in the classroom competition. They were the first to use a plastic bag instead of disposable cups to hold the ping pong balls. Using a bag, their design got more than half-way to the finish line – better than any other team at the time – but there was more work to do. 

As the trio considered what design changes to make next, they returned to the problem-solving theme of the day: unintended consequences. Earlier in the day, all the students had been challenged to consider unintended consequences and ask questions like: When you design to reduce friction, what happens? Do new problems emerge? Did other things improve that you hadn’t anticipated? 

Other groups soon followed Valeria, Melissa and Alondra’s lead and began iterating on their own plastic-bag solutions to the day’s challenge. New unintended consequences popped up everywhere. Switching from cups to a bag, for example, reduced friction but sometimes increased wind drag. 

Over the course of several iterations, Valeria, Melissa and Alondra made their bag smaller, blew their balloon up bigger, and switched to a different kind of tape to get a better connection with the plastic straw that slid along the kite string, carrying the ping pong balls. 

One of the groups on the other side of the room watched the emergence of the plastic-bag solution with great interest. 

“We tried everything, then we saw a team using a bag,” said Alexander, a student from City College. His team adopted the plastic-bag strategy as well, and iterated on it like everyone else. They also chose to blow up their balloon with a hand pump after the balloon was already attached to the bag filled with ping pong balls – which was unique. 

“I don’t want to be trying to put the balloon in place when it's about to explode,” Alexander explained. 

Asked about whether the structured problem solving approaches were useful, Alexander’s teammate Brianna, who is a Southwestern College student, talked about how the problem-solving tools have helped her get over mental blocks. “Sometimes we make the most ridiculous things work,” she said. “It’s a pretty fun class for sure.” 

Yoshadara, a City College student who is the third member of this team, described some of the problem solving techniques this way: “It’s about letting yourself be a little absurd.”

Alexander jumped back into the conversation. “The value is in the abstraction. As students, we learn to look at the problem solving that worked and then abstract out the problem solving strategy that can then be applied to other challenges. That’s what mathematicians do all the time,” he said, adding that he is already thinking about how he can apply the process of looking at unintended consequences to improve both how he plays chess and how he goes about solving math problems.

Looking ahead, the goal is to empower as many students as possible in the San Diego area and  beyond to learn to problem solve more enjoyably. It’s a concrete way to give students tools that could encourage them to thrive in the growing number of technical careers that require sharp problem-solving skills, whether or not they require a four-year degree. 

You May Also Like

Electrical engineer receives eckman award for research in control theory, startup developing noninvasive glucose test nets $4m in seed funding, scientists publish 37-year record of ocean acidification off southern california, 10 intriguing spaces in qi’s atkinson hall, stay in the know.

Keep up with all the latest from UC San Diego. Subscribe to the newsletter today.

You have been successfully subscribed to the UC San Diego Today Newsletter.

Campus & Community

Arts & culture.

  • Media Resources & Contacts

Signup to get the latest UC San Diego newsletters delivered to your inbox.

Award-winning publication highlighting the distinction, prestige and global impact of UC San Diego.

Popular Searches: Covid-19   Ukraine   Campus & Community   Arts & Culture   Voices

how to solve problem in education

  • High contrast
  • Press Centre


The state of the global education crisis, a path to recovery.

Children attending class in Niamey, the capital of Niger.

The global disruption to education caused by the COVD-19 pandemic is without parallel and the effects on learning are severe. The crisis brought education systems across the world to a halt, with school closures affecting more than 1.6 billion learners. While nearly every country in the world offered remote learning opportunities for students, the quality and reach of such initiatives varied greatly and were at best partial substitutes for in-person learning. Now, 21 months later, schools remain closed for millions of children and youth, and millions more are at risk of never returning to education. Evidence of the detrimental impacts of school closures on children’s learning offer a harrowing reality: learning losses are substantial, with the most marginalized children and youth often disproportionately affected.

The State of the Global Education Crisis: A Path to Recovery charts a path out of the global education crisis and towards building more effective, equitable and resilient education systems.

Young students from different countries

Files available for download

Related topics, more to explore, climate crisis + mental health.

Young people from Iraq, Lebanon, Morocco and the United Arab Emirates reflect on the links between the climate crisis and their mental health

Young people reflect on access to water in their countries

Young people from Iraq and Lebanon reflect on the challenges their countries face with access to water, and imagine their role in tackling the water crisis

Shipments to African countries herald final steps toward broader vaccination against malaria

World Children's Day 2023

Highlights from around the world as kids takeover and demand a better future.

World leading higher education information and services Home News Blogs Courses Jobs

Top 8 modern education problems and ways to solve them.

| September 15, 2017 | 0 responses

how to solve problem in education

In many ways, today’s system is better than the traditional one. Technology is the biggest change and the greatest advantage at the same time. Various devices, such as computers, projectors, tablets and smartphones, make the process of learning simpler and more fun. The Internet gives both students and teachers access to limitless knowledge.

However, this is not the perfect educational system. It has several problems, so we have to try to improve it.

  •  Problem: The Individual Needs of Low-Achievers Are Not Being Addressed

Personalized learning is the most popular trend in education. The educators are doing their best to identify the learning style of each student and provide training that corresponds to their needs.

However, many students are at risk of falling behind, especially children who are learning mathematics and reading. In the USA, in particular, there are large gaps in science achievements by middle school.

Solution: Address the Needs of Low-Achievers

The educators must try harder to reduce the number of students who are getting low results on long-term trajectories. If we identify these students at an early age, we can provide additional training to help them improve the results.

  • Problem: Overcrowded Classrooms

In 2016, there were over 17,000 state secondary school children in the UK being taught in classes of 36+ pupils.

Solution: Reduce the Number of Students in the Classroom

Only a smaller class can enable an active role for the student and improve the level of individual attention they get from the teacher.

  • Problem: The Teachers Are Expected to Entertain

Today’s generations of students love technology, so the teachers started using technology just to keep them engaged. That imposes a serious issue: education is becoming an entertainment rather than a learning process.

Solution: Set Some Limits

We don’t have to see education as opposed to entertainment. However, we have to make the students aware of the purpose of technology and games in the classroom. It’s all about learning.

  • Problem: Not Having Enough Time for Volunteering in University

The students are overwhelmed with projects and assignments. There is absolutely no space for internships and volunteering in college .

Solution: Make Internships and Volunteering Part of Education

When students graduate, a volunteering activity can make a great difference during the hiring process. In addition, these experiences help them develop into complete persons. If the students start getting credits for volunteering and internships, they will be willing to make the effort.

  • Problem: The Parents Are Too Involved

Due to the fact that technology became part of the early educational process, it’s necessary for the parents to observe the way their children use the Internet at home. They have to help the students to complete assignments involving technology.

What about those parents who don’t have enough time for that? What if they have time, but want to use it in a different way?

Solution: Stop Expecting Parents to Act Like Teachers at Home

The parent should definitely support their child throughout the schooling process. However, we mustn’t turn this into a mandatory role. The teachers should stop assigning homework that demands parental assistance.

  • Problem: Outdated Curriculum

Although we transformed the educational system, many features of the curriculum remained unchanged.

Solution: Eliminate Standardised Exams

This is a radical suggestion. However, standardised exams are a big problem. We want the students to learn at their own pace. We are personalizing the process of education. Then why do we expect them to compete with each other and meet the same standards as everyone else? The teacher should be the one responsible of grading.

  • Problem: Not All Teachers Can Meet the Standards of the New Educational System

Can we really expect all teachers to use technology? Some of them are near the end of their teaching careers and they have never used tablets in the lecturing process before.

Solution: Provide Better Training for the Teachers

If we want all students to receive high-quality education based on the standards of the system, we have to prepare the teachers first. They need more training, preparation, and even tests that prove they can teach today’s generations of students.

  • Problem: Graduates Are Not Ready for What Follows

A third of the employers in the UK are not happy with the performance of recent graduates. That means the system is not preparing them well for the challenges that follow.

Solution: More Internships, More Realistic Education

Practical education – that’s a challenge we still haven’t met. We have to get more practical.

The evolution of the educational system is an important process. Currently, we have a system that’s more suitable to the needs of generations when compared to the traditional system. However, it’s still not perfect. The evolution never stops.

Author Bio:   Chris Richardson is a journalist, editor, and a blogger. He loves to write, learn new things, and meet new outgoing people. Chris is also fond of traveling, sports, and playing the guitar. Follow him on Facebook and Google+ .

Tags: solutions

Resilient Educator logo

Trauma-Informed Practices in Schools

Teacher well-being, cultivating diversity, equity, & inclusion, integrating technology in the classroom, social-emotional development, covid-19 resources, invest in resilience: summer toolkit, civics & resilience, all toolkits, degree programs, trauma-informed professional development, teacher licensure & certification, how to become - career information, classroom management, instructional design, lifestyle & self-care, online higher ed teaching, current events, 5 problem-solving activities for elementary classrooms.

5 Problem-Solving Activities for Elementary Classrooms

Classroom problem-solving activities teach children how to engage problems rather than to become frustrated with them. Teachers have the opportunity to teach children the proper methods for dealing with stressful situations, complex problems, and fast decision-making. While a teacher is unlikely to actually put the child into a difficult or otherwise harmful situation, he or she can use activities to teach the child how to handle such situations later on in life.

Teach the problems

To solve any problem, students must go through a process to do so. The teacher can explore this process with students as a group. The first step is to fully understand the problem. To teach this, ask students to describe the problem in their own words. This ensures the student is able to comprehend and express the concern at hand. Then, they must describe and understand the barriers presented. At this point, it’s a good idea to provide ways for the student to find a solution. That’s where activities come into play.

The following are five activities elementary teachers can use to teach problem-solving to students. Teaching students to identify the possible solutions requires approaching the problem in various ways.

No. 1 – Create a visual image

One option is to teach children to create a visual image of the situation. Many times, this is an effective problem-solving skill. They are able to close their eyes and create a mind picture of the problem. For younger students, it may be helpful to draw out the problem they see on a piece of paper.

Ask the child to then discuss possible solutions to the problem. This could be done by visualizing what would happen if one action is taken or if another action is taken. By creating these mental images, the student is fully engaged and can map out any potential complications to their proposed solution.

No. 2 – Use manipulatives

Another activity that is ideal for children is to use manipulatives. In a situation where the problem is space-related, for example the children can move their desks around in various ways to create a pattern or to better visualize the problem. It’s also possible to use simple objects on a table, such as blocks, to create patterns or to set up a problem. This is an ideal way to teach problem-solving skills for math.

By doing this, it takes a problem, often a word problem that’s hard for some students to visualize, and places it in front of the student in a new way. The child is then able to organize the situation into something he or she understands.

No. 3 – Make a guess

Guessing is a very effective problem-solving skill. For those children who are unlikely to actually take action but are likely to sit and ponder until the right answer hits them, guessing is a critical step in problem-solving. This approach involves trial and error.

Rather than approaching guessing as a solution to problems (you do not want children to think they can always guess), teach that it is a way to gather more data. If, for example, they do not know enough about the situation to make a full decision, by guessing, they can gather more facts from the outcome and use that to find the right answer.

No. 4 – Patterns

No matter if the problem relates to social situations or if it is something that has to do with science, patterns are present. By teaching children to look for patterns, they can see what is happening more fully.

For example, define what a pattern is. Then, have the child look for any type of pattern in the context. If the children are solving a mystery, for example, they can look for patterns in time, place or people to better gather facts.

No. 5 – Making a list

Another effective tool is list making. Teach children how to make a list of all of the ideas they come up with right away. Brainstorming is a fun activity in any subject. Then, the child is able to work through the list to determine which options are problems or not.

Classroom problem-solving activities like these engage a group or a single student. They teach not what the answer is, but how the student can find that answer.

You may also like to read

  • Five Benefits of Adding Gamification to Classrooms
  • Three Tips for Elementary Leadership Activities
  • 5 Problem-Solving Activities for the Classroom
  • Five Carbon Footprint Activities for Kids
  • Mindfulness Activities for the Elementary Classroom
  • Teachers: How to Find Cheap Books for Classrooms

Categorized as: Tips for Teachers and Classroom Resources

  • Online & Campus Master's in Elementary Educat...
  • Online Masters in Education for Teachers | ME...
  • How to Teach Reading Comprehension: Resources...
  • Share full article


Supported by

How Millions of Borrowers Got $127 Billion in Student Loans Canceled

The Biden administration may have been blocked from canceling debt for tens of millions of borrowers by the Supreme Court, but it has still managed to eliminate billions in education debt.

Students walking around a college campus surrounded by trees.

By Stacy Cowley

When the Supreme Court struck down President Biden’s $400 billion plan to forgive up to $20,000 in federal student loan debt for 43 million borrowers, the prospect of substantive debt relief appeared to vanish.

But then millions of borrowers received surprise notices that their federal student loans were being eliminated through other government relief programs. The Biden administration has wiped out loans totaling $127 billion for 3.6 million borrowers — the biggest wave of student debt cancellation since the government began backing educational loans more than 60 years ago.

The cost of that relief is ultimately borne by taxpayers. The Education Department is the largest lender for Americans who borrow for higher education, and 43 million borrowers currently owe the government $1.6 trillion. The government profits from the interest that borrowers pay, but loan defaults and canceled debts offset that. The system is projected to run at a loss in most years.

Many of the programs that the Biden administration is using have existed for years, sometimes decades, but were notoriously troubled, forcing borrowers to navigate complicated bureaucratic hurdles. By adjusting rules and temporarily waiving some requirements, Education Department officials have accelerated long-delayed relief. Here are the four largest programs being used to eliminate loan debts — and how five borrowers benefited from them.

Public Service Loan Forgiveness Debts canceled: $51 billion for 715,000 borrowers

In 2007, Congress passed a law intended to entice more college graduates into public service careers: Those who worked for government agencies or nonprofit organizations would, after 10 years of monthly loan payments, have their remaining federal student loan balance eliminated.

But the program’s complex rules turned it into a quagmire that rejected 99 percent of applicants — and an effort in 2018 to apply patchwork fixes became another debacle . In 2021, the Biden administration tried again to cancel student loan debt by temporarily bulldozing the program’s rules and crediting hundreds of thousands of borrowers for previously ineligible payments.

That finally worked. More than 230,000 people had their loans eliminated through a waiver system that ended last year, and many more gained credits that sped up their forgiveness date.

Derik Screen, 41, works as a business intelligence analyst at the University of North Carolina at Charlotte. To pay for the M.B.A. degree he earned in 2008 from the University of Phoenix, he took out loans totaling $39,000.

Mr. Screen signed up for an income-driven payment plan and began chipping away at the balance, but interest costs kept his balance ballooning. Last year, he learned about the Biden administration’s temporary waiver and realized that many of his past payments could qualify. He also discovered that he could get credit for the years he had spent working in the admissions office at his undergraduate alma mater, the Virginia Military Institute.

Consolidating his loans, assembling the paperwork and obtaining the needed certifications from both his current employer and his past one took dozens of hours. “It was very cumbersome — it really was,” Mr. Screen said. But in September, his persistence paid off: He received a letter notifying him that his $86,000 loan balance had been eliminated.

“That relief, it’s amazing, after so many years,” he said. “And the idea that after 10 years, your debt can triple — I know for a lot of people, it’s just a number they’ll never be able to pay.”

Income-Driven Repayment Adjustment Debts canceled: $42 billion for 855,000 borrowers

The Education Department hires loan servicers to collect borrowers’ monthly payments and help them navigate their repayment options. Watchdogs and auditors, including the department’s own inspector general , have repeatedly raised alarms about the servicers’ shoddy work and lax oversight.

One frequent complaint was that servicers would improperly place borrowers’ loans into forbearance, sometimes for years — during which interest kept accruing — and failed to guide borrowers toward income-driven options that could have sharply reduced their total payments.

Last year, the government announced a plan to address those problems by essentially wielding a giant eraser.

Income-driven payment plans are designed to eliminate any remaining balance after a set period of repayment, typically 20 years. Even for borrowers who never enrolled in those plans, the Education Department decided to count virtually any payment, for any amount, as a qualifying one — and it added to its tally many months in which borrowers made no payments at all because they had a long-term deferment or forbearance. The department chose to apply those adjustments automatically for all borrowers, no application needed.

The result was that hundreds of thousands of borrowers abruptly discovered that their loans had reached the 20-year mark and been eliminated. The first notification letters were sent on July 14.

That day, when Chris White, 40, got an email from the Education Department with the subject line “You’re eligible to have your student loan(s) forgiven!,” he didn’t believe it. Mr. White figured that this, like Mr. Biden’s quashed mass-cancellation plan, would be revoked, too.

“I remember thinking, specifically, it’s great to see that they’re still trying and they’re working at this, and that means a lot — but I, in no way, expected it to actually happen,” he recalled. “And then one day, I logged on to my loan servicer’s website, and it just said that my balance was zero.”

The maneuver freed Mr. White from $22,000 in debt he had for the bachelor’s degree in electrical engineering that he received from the University of Maine in 2007. He had spent several years working in the field but decided it was a poor fit and quit to pursue other trades. He is now a freight warehouse manager in Pembina, N.D.

Mr. White was especially surprised to have his loan forgiven because he had made payments on it intermittently — before the pandemic, his loan was in default — and some of the debt was less than 20 years old. But soon after he graduated, Mr. White had consolidated his loans. In calculating the adjustment, the Education Department counts any payment (or qualifying forbearance) on any debt in a consolidated loan toward the 20-year clock — and Mr. White had some loans dating back to 2001.

Chuck Ertel-Hoy, 72, retired in 2019 after 25 years of teaching communications at public universities — but he still owed $42,500 for a Ph.D. he earned in 1997 from the University of Tennessee.

Mr. Ertel-Hoy, who lives in Indianapolis, had tried for years to have his loans discharged through the public service loan forgiveness program, but he kept running into paperwork problems. He had just sent off yet more paperwork when the email arrived in July saying his loans would be forgiven through the income-driven repayment adjustment.

“It relieves a lot of pressure,” he said. Mr. Ertel-Hoy had been dreading the prospect of trying to squeeze $300 a month out of retirement savings to resume payment on his loans when the pandemic pause ended. “I’d thought, am I still going to have to pay on these student loans for the rest of my life?” he said.

Borrower Defense to Repayment and Closed-School Discharge Debts canceled: $22.5 billion for 1.3 million borrowers

In 2014, Corinthian Colleges — once one of the country’s largest for-profit college chains — collapsed . It was quickly followed by ITT Technical Institutes , another industry giant. Tens of thousands of mid-degree students were left stranded, and hundreds of thousands more were paying off loans for an often substandard education that failed to deliver on the career growth and earning potential the schools had advertised.

The debacle catalyzed a wave of grass-roots activism: Former students teamed with crusading lawyers to request relief through an obscure federal student loan provision , known as “borrower defense to repayment.” Students whose schools defrauded them, typically by breaking consumer protection laws, could seek to have their loans forgiven.

The Obama administration began to build a system for handling those requests, but it ground to a halt during the Trump administration. When Mr. Biden assumed office, tens of thousands of claims — some that had been languishing for as long as six years — were pending, and over 130,000 others had been summarily rejected.

In 2022, the Biden administration agreed to settle a class-action claim that covered 200,000 borrowers who had attended more than 150 schools. One of them is Sally Olsen, 64, who earned a bachelor’s degree in business management at American InterContinental University, a for-profit school whose owner paid $30 million to settle fraud charges brought by the Federal Trade Commission.

Ms. Olsen enrolled in 2004, but she was underwhelmed by her educational experiences there and overwhelmed by the debt it left her with: Nearly $110,000 in federal loans and tens of thousands more in private loans.

Ms. Olsen, an administrative assistant at an insurance agency in Bloomington, Ill., eventually paid off the private loans through a settlement, but the federal loans haunted her. Seeking help, Ms. Olsen — a former Marine — contacted Veterans Education Success, an advocacy group. Their representatives helped her file a borrower defense claim in 2021.

Legal challenges delayed the class-action settlement, but in May, Ms. Olsen finally got the news she had dreamed of: Her $70,127 federal loan balance had been eliminated.

“I think God finally heard my prayers, after all these years,” she said.

Total and Permanent Disability Debts canceled: $11.7 billion for 513,000 borrowers

Borrowers who are permanently disabled are eligible to have their federal student loans eliminated . The process had long been a bureaucratic obstacle course, requiring doctors’ notes — which were often rejected, with little or no explanation, because of documentation errors — and years of income-monitoring and other compliance requirements. Many who would have qualified for relief never bothered to apply.

But two government agencies already had data on people who were fully disabled: the Social Security Administration and the Department of Veterans Affairs. By creating automatic data-matching programs with both agencies and eliminating some income documentation requirements, the Education Department significantly expanded the number of borrowers who gained relief.

Khen Reyes, 48, was medically discharged from the Navy last year after a military career that spanned four decades. It left him with post-traumatic stress disorder, anxiety and depression. The Department of Veterans Affairs determines the severity of service-related disabilities through a ratings scale; Mr. Reyes maxed out, at 100 percent.

In 1997, Mr. Reyes enrolled in an aircraft mechanics certification program at the Sierra Academy of Aeronautics. More than two decades later, he still owed just over $25,000 — a defaulted debt that had prevented his wife and him from obtaining a V.A. home loan. Armed with his military discharge papers and his disability documentation, he sought to have his loan eliminated.

Late last year, Mr. Reyes, who lives in Foster City, Calif., checked his loan servicer’s website and saw a $0 balance.

“Other service members are in a similar boat as me,” he said. “I want service members to know, this is about accepting something that you worked hard for. I don’t have any shame that I used this resource. If there’s a program that helps us, oh my God, by any means — use it.”

Stacy Cowley is a business reporter who writes about a broad array of topics related to consumer finance, including student debt, the banking industry and small business. More about Stacy Cowley


  1. problem solutions infographic

    how to solve problem in education

  2. Problem Solving Strategies for Education

    how to solve problem in education

  3. 8 Strategies to Motivate Kids to Love Problem Solving

    how to solve problem in education

  4. How to find solutions to your education problem ?

    how to solve problem in education

  5. 😀 Problem solving step. The Seven A3 Problem Solving Steps in Detail

    how to solve problem in education

  6. Looking for a strategy to help students solve math word problems? Check

    how to solve problem in education


  1. 10 Ways to Tackle Education's Urgent Challenges

    1. Schools are doing too much We're asking schools to accomplish more than what their funding allows and we're asking their employees to do far more than they've been trained to do. Read more. 2....

  2. Teaching Problem Solving

    Two-Column Solution (Physics) Encourage Independence Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear Have students work through problems on their own.

  3. Problem Solving Education

    THINKING SKILLS: P ROBLEM S OLVING Problems & Problem Solving Basic Problem-Solving Skills Education for Problem Solving Problems in Design & Science Problem Solving in Schools CREATIVE THINKING Be Creative-and-Critical Creativity for Living (Part 1) What, Why, and How Principles and Strategies Liberating Creativity Creativity for Living (Part 2)

  4. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    By naming what it is they did to solve the problem, students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks. After a few weeks ...

  5. 8 Chapter 6 Supporting Student Problem-Solving

    Across content areas, the standards address problem-solving in the form of being able to improvise, decide, inquire, and research. In fact, math and science standards are premised almost completely on problem-solving and inquiry. ... Example 2: Homelessness vs. Education. Problem: The state legislature is asking for public input on the next ...

  6. Educational leaders' problem-solving for educational improvement

    5 Citations 22 Altmetric Explore all metrics Cite this article Abstract Educational leaders' effectiveness in solving problems is vital to school and system-level efforts to address macrosystem problems of educational inequity and social injustice.

  7. Strengthening High School Students' Problem-Solving Skills

    Finding, shaping, and solving problems puts high school students in charge of their learning and bolsters critical-thinking skills. As an educator for over 20 years, I've heard a lot about critical thinking, problem-solving, and inquiry and how they foster student engagement. However, I've also seen students draw a blank when they're ...

  8. Teaching Problem Solving

    Jonassen (2000, p. 65) defines a problem as an "unknown entity in some situation (the difference between a goal state and a current state)" such that "finding or solving for the unknown must have some social, cultural, or intellectual value."

  9. Solve a Teaching Problem

    Welcome! This site provides practical strategies to address teaching problems across the disciplines. These strategies are firmly grounded in educational research and learning principles. How does it work? Step 1: Identify a PROBLEM you encounter in your teaching.

  10. 8

    > Books > The Cambridge Handbook of Cognition and Education > Learning How to Solve Problems by Studying Examples 8 - Learning How to Solve Problems by Studying Examples from Part II - Science and Math Published online by Cambridge University Press: 08 February 2019 By Tamara van Gog , Nikol Rummel and Alexander Renkl Edited by John Dunlosky and

  11. How to Teach Kids Problem-Solving Skills

    Here are the steps to problem-solving: . Identify the problem. Just stating the problem out loud can make a big difference for kids who are feeling stuck. Help your child state the problem, such as, "You don't have anyone to play with at recess," or "You aren't sure if you should take the advanced math class."

  12. What Will It Take to Fix Public Education?

    President Barack Obama had his own signature education law: the grant program Race to the Top, originally part of the 2009 stimulus package, which offered funds to states that undertook various reforms, including expanding charter schools, adopting the Common Core curriculum standards, and reforming teacher evaluation.

  13. How Do We Educate Global Problem Solvers?

    1. True Price True Price is a humane education activity in which students analyze an everyday item, such as an article of clothing, an electronic device, a food, etc., and ask the following questions: What are its effects, both positive and negative, on you as an individual consumer, on other people, on animals, and on the environment?

  14. What Students Are Saying About How to Improve American Education

    An international exam shows that American 15-year-olds are stagnant in reading and math. Teenagers told us what's working and what's not in the American education system. In American schools ...

  15. What It Takes to Actually Improve Math Education

    In the interview, Coulson states that the "innate ability of visualizing math was not being leveraged to solve a serious education problem: a lack of deep conceptual understanding of mathematics ...

  16. The global education challenge: Scaling up to tackle the learning

    Among global education's most urgent challenges is a severe lack of trained teachers, particularly female teachers. An additional 9 million trained teachers are needed in sub-Saharan Africa by ...

  17. Seven Solutions for Education Inequality

    Concretely, the first solution would be to reduce class distinctions among students by doing away with the property tax as a primary funding source. This is a significant driver for education inequality because low-income students, by default, will receive less.

  18. Problem-Solving Steps

    Introduction. (10 minutes) Bring students together in a circle, either seated or standing. Bring blocks with you to the circle. Show the student the blocks and ask them to watch you build a tall castle. After you build it, bring out two figurines that you would like to play with in the castle. Say out loud, "Hmm....there seems to be a problem.

  19. How to Solve Your Student Retention Problem Using Strengths

    4. Make the Connection to Life After School. A key to student retention and persistence is reiterating the value of the academic experience and how it will translate to future success. Not all ...

  20. Don't Just Tell Students to Solve Problems. Teach Them How

    October 10, 2023 By: Daniel Kane - [email protected] Share This: Problem solving is a critical skill for technical education and technical careers of all types. But what are best practices for teaching problem solving to high school and college students?

  21. The State of the Global Education Crisis

    Highlights. The global disruption to education caused by the COVD-19 pandemic is without parallel and the effects on learning are severe. The crisis brought education systems across the world to a halt, with school closures affecting more than 1.6 billion learners. While nearly every country in the world offered remote learning opportunities ...

  22. Top 8 modern education problems and ways to solve them

    Solution: Set Some Limits We don't have to see education as opposed to entertainment. However, we have to make the students aware of the purpose of technology and games in the classroom. It's all about learning. Problem: Not Having Enough Time for Volunteering in University The students are overwhelmed with projects and assignments.

  23. 5 Problem-Solving Activities for Elementary Classrooms

    Teach the problems. To solve any problem, students must go through a process to do so. The teacher can explore this process with students as a group. The first step is to fully understand the problem. To teach this, ask students to describe the problem in their own words. This ensures the student is able to comprehend and express the concern at ...

  24. How to Design Curricula for Critical Thinking and Problem-Solving Skills

    Integrate real-world scenarios. One of the most effective ways to foster critical thinking and problem-solving skills is to expose students to realistic and complex scenarios that require them to ...

  25. What Problem Does Education Solve?

    According to. Seth Godin, the purpose of the industrial era system of public education was to teach obedience. It may be that our current institutions do this well, too. What is not clear about ...

  26. How Millions of Borrowers Got $127 Billion in Student Loan Debt

    By Stacy Cowley. Nov. 11, 2023. When the Supreme Court struck down President Biden's $400 billion plan to forgive up to $20,000 in federal student loan debt for 43 million borrowers, the ...